ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic splitting of intersubband spin plasmons in quantum wells with bulk and structural inversion asymmetry

110   0   0.0 ( 0 )
 نشر من قبل Carsten A. Ullrich
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In semiconductor heterostructures, bulk and structural inversion asymmetry and spin-orbit coupling induce a k-dependent spin splitting of valence and conduction subbands, which can be viewed as being caused by momentum-dependent crystal magnetic fields. This paper studies the influence of these effective magnetic fields on the intersubband spin dynamics in an asymmetric n-type GaAs/AlGaAs quantum well. We calculate the dispersions of intersubband spin plasmons using linear response theory. The so-called Dyakonov-Perel decoherence mechanism is inactive for collective intersubband excitations, i.e., crystal magnetic fields do not lead to decoherence of spin plasmons. Instead, we predict that the main signature of bulk and structural inversion asymmetry in intersubband spin dynamics is a three-fold, anisotropic splitting of the spin plasmon dispersion. The importance of many-body effects is pointed out, and conditions for experimental observation with inelastic light scattering are discussed.

قيم البحث

اقرأ أيضاً

In inversion-asymmetric semiconductors, spin-orbit coupling induces a k-dependent spin splitting of valence and conduction bands, which is a well-known cause for spin decoherence in bulk and heterostructures. Manipulating nonequilibrium spin coherenc e in device applications thus requires understanding how valence and conduction band spin splitting affects carrier spin dynamics. This paper studies the relevance of this decoherence mechanism for collective intersubband spin-density excitations (SDEs) in quantum wells. A density-functional formalism for the linear spin-density matrix response is presented that describes SDEs in the conduction band of quantum wells with subbands that may be non-parabolic and spin-split due to bulk or structural inversion asymmetry (Rashba effect). As an example, we consider a 40 nm GaAs/AlGaAs quantum well, including Rashba spin splitting of the conduction subbands. We find a coupling and wavevector-dependent splitting of the longitudinal and transverse SDEs. However, decoherence of the SDEs is not determined by subband spin splitting, due to collective effects arising from dynamical exchange and correlation.
We present a quantum model to calculate the dipole-dipole coupling between electronic excitations in the conduction band of semiconductor quantum wells. We demonstrate that the coupling depends on a characteristic length, related to the overlap betwe en microscopic current densities associated with each electronic excitation. As a result of the coupling, a macroscopic polarization is established in the quantum wells, corresponding to one or few bright collective modes of the electron gas. Our model is applied to derive a sum rule and to investigate the interplay between tunnel coupling and Coulomb interaction in the absorption spectrum of a dense electron gas.
Zeeman splitting of quantum-confined states of excitons in InGaAs quantum wells (QWs) is experimentally found to depend strongly on quantization energy. Moreover, it changes sign when the quantization energy increases with a decrease in the QW width. In the 87-nm QW, the sign change is observed for the excited quantum-confined states, which are above the ground state only by a few meV. A two-step approach for the numerical solution of the two-particle Schroedinger equation, taking into account the Coulomb interaction and valence-band coupling, is used for a theoretical justification of the observed phenomenon. The calculated variation of the g-factor convincingly follows the dependencies obtained in the experiments.
We report on beating appearance in Shubnikov-de Haas oscillations in conduction band of 18-22nm HgTe quantum wells under applied top-gate voltage. Analysis of the beatings reveals two electron concentrations at the Fermi level arising due to Rashba-l ike spin splitting of the first conduction subband H1. The difference dN_s in two concentrations as a function of the gate voltage is qualitatively explained by a proposed toy electrostatic model involving the surface states localized at quantum well interfaces. Experimental values of dN_s are also in a good quantitative agreement with self-consistent calculations of Poisson and Schrodinger equations with eight-band kp Hamiltonian. Our results clearly demonstrate that the large spin splitting of the first conduction subband is caused by surface nature of $H1$ states hybridized with the heavy-hole band.
209 - T. Hatano , W. Kume , S. Watanabe 2014
Nuclear-spin diffusion in double quantum wells (QWs) is examined by using dynamic nuclear polarization (DNP) at a Landau level filling factor $ u=2/3$ spin phase transition (SPT). The longitudinal resistance increases during the DNP of one of the two QW (the polarization QW) by means of a large applied current and starts to decrease just after the termination of the DNP. On the other hand, the longitudinal resistance of the other QW (the detection QW) continuously increases for approximately 2h after the termination of the DNP of the polarization QW. It is therefore concluded that the nuclear spins diffuse from the polarization QW to the detection QW. The time evolution of the longitudinal resistance of the polarization QW is explained mainly by the nuclear-spin diffusion in the in-plane direction. In contrast, that of the detection QW manifests much slower nuclear diffusion in the perpendicular direction through the AlGaAs barrier.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا