ترغب بنشر مسار تعليمي؟ اضغط هنا

Little-Parks effect and multiquanta vortices in a hybrid superconductor--ferromagnet system

66   0   0.0 ( 0 )
 نشر من قبل Alexei Yurievich Aladyshkin
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Within the phenomenological Ginzburg-Landau theory we investigate the phase diagram of a thin superconducting film with ferromagnetic nanoparticles. We study the oscillatory dependence of the critical temperature on an external magnetic field similar to the Little-Parks effect and formation of multiquantum vortex structures. The structure of a superconducting state is studied both analytically and numerically.



قيم البحث

اقرأ أيضاً

In superconductors, the condensation of Cooper pairs gives rise to fluxoid quantization in discrete units of $Phi_0 = hc / 2e$. The denominator of $2e$ is the signature of electron pairing, which is evidenced by a number of macroscopic quantum phenom ena, such as the Little-Parks effect and the Josephson effect, where the critical temperature or the critical current oscillates in the period of $Phi_0$. Here we report the observation of fractional Little-Parks effect in mesoscopic rings of epitaxial $beta$-Bi$_2$Pd, a topological superconductor. Besides $Phi_0$, novel Little-Parks oscillation periodicities of $2Phi_0$, $3Phi_0$ and $4Phi_0$ are also observed, implying quasiparticles with effective charges being a fraction of a Cooper pair. We show that the fractional Little-Parks effect may be closely related to the fractional Josephson effect, which is a key signature of chiral Majorana edge states.
We present results of measurements obtained from a mesoscopic ring of a highly disordered superconductor. Superimposed on a smooth magnetoresistance background we find periodic oscillations with a period that is independent of the strength of the mag netic field. The period of the oscillations is consistent with charge transport by Cooper pairs. The oscillations persist unabated for more than 90 periods, through the transition to the insulating phase, up to our highest field of 12 T.
Little-Parks effect names the oscillations in the superconducting critical temperature as a function of the magnetic field. This effect is related to the geometry of the sample. In this work, we show that this effect can be enhanced and manipulated b y the inclusion of magnetic nanostructures with perpendicular magnetization. These magnetic nanodots generate stray fields with enough strength to produce superconducting vortex-antivortex pairs. So that, the L-P effect deviation from the usual geometrical constrictions is due to the interplay between local magnetic stray fields and superconducting vortices. Moreover, we compare our results with a low-stray field sample (i.e. with the dots in magnetic vortex state) showing how the enhancement of the L-P effect can be explained by an increment of the effective size of the nanodots.
62 - Florian R. Ong 2006
We present the first measurements of thermal signatures of the Little-Parks effect using a highly sensitive nanocalorimeter. Small variations of the heat capacity $C_p$ of 2.5 millions of non interacting micrometer-sized superconducting rings threade d by a magnetic flux $Phi$ have been measured by attojoule calorimetry. This non-invasive method allows the measurement of thermodynamic properties -- and hence the probing of the energy levels -- of nanosystems without perturbing them electrically. It is observed that $C_p$ is strongly influenced by the fluxoid quantization (Little-Parks effect) near the critical temperature $T_c$. The jump of $C_p$ at the superconducting phase transition is an oscillating function of $Phi$ with a period $Phi_0=h/2e$, the magnetic flux quantum, which is in agreement with the Ginzburg-Landau theory of superconductivity.
We investigate a hybrid heterostructure with magnetic skyrmions (Sk) inside a chiral ferromagnet interfaced by a thin superconducting film via an insulating barrier. The barrier prevents the electronic transport between the superconductor and the chi ral magnet, such that the coupling can only occur through the magnetic fields generated by these materials. We find that Pearl vortices (PV) are generated spontaneously in the superconductor within the skyrmion radius, while anti-Pearl vortices ((overline{mathrm{PV}})) compensating the magnetic moment of the Pearl vortices are generated outside of the Sk radius, forming an energetically stable topological hybrid structure. Finally, we analyze the interplay of skyrmion and vortex lattices and their mutual feedback on each other. In particular, we argue that the size of the skyrmions will be greatly affected by the presence of the vortices offering another prospect of manipulating the skyrmionic size by the proximity to a superconductor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا