ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic field and pressure effects on charge density wave, superconducting, and magnetic states in Lu$_5$Ir$_4$Si$_{10}$ and Er$_5$Ir$_4$Si$_{10}$

80   0   0.0 ( 0 )
 نشر من قبل Myung-Hwa Jung
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the charge-density-wave (CDW) state for the superconducting Lu$_5$Ir$_4$Si$_{10}$ and the antiferromagnetic Er$_5$Ir$_4$Si$_{10}$ as variables of temperature, magnetic field, and hydrostatic pressure. For Lu$_5$Ir$_4$Si$_{10}$, the application of pressure strongly suppresses the CDW phase but weakly enhances the superconducting phase. For Er$_5$Ir$_4$Si$_{10}$, the incommensurate CDW state is pressure independent and the commensurate CDW state strongly depends on the pressure, whereas the antiferromagnetic ordering is slightly depressed by applying pressure. In addition, Er$_5$Ir$_4$Si$_{10}$ shows negative magnetoresistance at low temperatures, compared with the positive magnetoresistance of Lu$_5$Ir$_4$Si$_{10}$.



قيم البحث

اقرأ أيضاً

Real-space modulated Charge Density Waves (CDW) are an ubiquituous feature in many families of superconductors. In particular, how CDW relates to superconductivity is an active and open question that has recently gathered much interest since CDWs hav e been discovered in many cuprates superconductors. Here we show that disorder induced by proton irradiation is a full-fledged tuning parameter that can bring essential information to answer this question as it affects CDW and superconductivity with different and unequivocal mechanisms. Specifically, in the model CDW superconductor Lu$_5$Ir$_4$Si$_{10}$ that develops a 1D CDW below 77,K and s-wave superconductivity below 4,K, we show that disorder enhances the superconducting critical temperature $T_mathrm{c}$ and $H_mathrm{c2}$ while it suppresses the CDW. Discussing how disorder affects both superconductivity and the CDW, we make a compelling case that superconductivity and CDW are competing for electronic density of states at the Fermi level in Lu$_5$Ir$_4$Si$_{10}$, and we reconcile the results obtained via the more common tuning parameters of pressure and doping. Owing to its prototypical, 1D, Peierls type CDW and the s-wave, weak-coupling nature of its superconductivity, this irradiation study of Lu$_5$Ir$_4$Si$_{10}$ provides the basis to understand and extend such studies to the more complex cases of density waves and superconductivity coexistence in heavy fermions, Fe-based or cuprates superconductors.
We present nuclear magnetic resonance (NMR) measurements on the three distinct In sites of CeCoIn$_5$ with magnetic field applied in the [100] direction. We identify the microscopic nature of the long range magnetic order (LRO) stabilized at low temp eratures in fields above 10.2 T while still in the superconducting (SC) state. We infer that the ordered moment is oriented along the $hat c$-axis and map its field evolution. The study of the field dependence of the NMR shift for the different In sites indicates that the LRO likely coexists with a modulated SC phase, possibly that predicted by Fulde, Ferrell, Larkin, and Ovchinnikov. Furthermore, we discern a field region dominated by strong spin fluctuations where static LRO is absent and propose a revised phase diagram.
We present detailed investigations in single crystals of two recently reported quaternary intermetallic compounds EuRhAl$_4$Si$_2$ and EuIrAl$_4$Si$_2$ employing magnetization, electrical resistivity in zero and applied fields, heat capacity and $^{1 51}$Eu M{o}ssbauer spectroscopy measurements. The two compounds order antiferromagnetically at $T_{rm N1}$ = 11.7 and 14.7,K, respectively, each undergoing two magnetic transitions: the first from paramagnetic to incommensurate modulated antiferromagnetic, the second at lower temperature to a commensurate antiferromagnetic phase as confirmed by heat capacity and M{o}ssbauer spectra. The magnetic properties in the ordered state present a large anisotropy despite Eu$^{2+}$ being an $S$-state ion for which the single-ion anisotropy is expected to be weak. Two features in the magnetization measured along the $c$-axis are prominent. At 1.8,K, a ferromagnetic-like jump occurs at very low field to a value one third of the saturation magnetization (1/3 M$_0$) followed by a wide plateau up to 2,T for T = Rh and 4,T for T = Ir. At this field value, a sharp hysteretic spin-flop transition occurs to a fully saturated state (M$_0$). Surprisingly, the magnetization does not return to origin when the field is reduced to zero in the return cycle, as expected in an antiferromagnet. Instead, a remnant magnetization 1/3 M$_0$ is observed and the magnetic loop around the origin shows hysteresis. This suggests that the zero field magnetic structure has a ferromagnetic component, and we present a model with up to third neighbor exchange and dipolar interaction which reproduces the magnetization curves and hints to an up-up-down magnetic structure in zero field.
Oxides containing iridium ions display a range of magnetic and conducting properties that depend on the delicate balance between interactions and are controlled, at least in part, by the details of the crystal architecture. We have used muon-spin rot ation ($mu$SR) to study the local field in four iridium oxides, Ca$_4$IrO$_6$, Ca$_5$Ir$_3$O$_{12}$, Sr$_3$Ir$_2$O$_7$ and Sr$_2$IrO$_4$, which show contrasting behavior. Our $mu$SR data on Ca$_4$IrO$_6$ and Ca$_5$Ir$_3$O$_{12}$ are consistent with conventional antiferromagnetism where quasistatic magnetic order develops below $T_{rm N}=13.85(6)$ K and 7.84(7) K respectively. A lower internal field is observed for Ca$_5$Ir$_3$O$_{12}$, as compared to Ca$_4$IrO$_6$ reflecting the presence of both Ir$^{4+}$ and Ir$^{5+}$ ions, resulting in a more magnetically dilute structure. Muon precession is only observed over a restricted range of temperature in Sr$_3$Ir$_2$O$_7$, while the Mott insulator Sr$_2$IrO$_4$ displays more complex behavior, with the $mu$SR signal containing a single, well-resolved precession signal below $T_{rm N}=230$,K, which splits into two precession signals at low temperature following a reorientation of the spins in the ordered state.
We report the synthesis and the magnetic properties of single crystalline CeRhAl$_4$Si$_2$ and CeIrAl$_4$Si$_2$ and their non magnetic La-analogs. The single crystals of these quaternary compounds were grown using Al-Si binary eutectic as flux. The a nisotropic magnetic properties of the cerium compounds were explored in detail by means of magnetic susceptibility, isothermal magnetization, electrical resistivity, magnetoresistivity and heat capacity measurements. Both CeRhAl$_4$Si$_2$ and CeIrAl$_4$Si$_2$ undergo two antiferromagnetic transitions, first from the paramagnetic to an antiferromagnetic state at $T_{rm N1}$~=~12.6~K and 15.5~K, followed by a second transition at lower temperatures $T_{rm N2}$~=~9.4~K and 13.8~K, respectively. The paramagnetic susceptibility is highly anisotropic and its temperature dependence in the magnetically ordered state suggests the $c$-axis to be the relatively easy axis of magnetization. Concomitantly, isothermal magnetization at 2~K along the $c$-axis shows a sharp spin-flop transition accompanied by a sizeable hysteresis, while it varies nearly linearly with field along the [100] direction up to the highest field 14~T, of our measurement. The electrical resistivity provides evidence of the Kondo interaction in both compounds, inferred from its $-lnT$ behavior in the paramagnetic region. The heat capacity data confirm the bulk nature of the two magnetic transitions in each compound, and further confirm the presence of Kondo interaction by a reduced value of the entropy associated with the magnetic ordering. From the heat capacity data below 1~K, the coefficient of the linear term in the electronic heat capacity, $gamma$, is inferred to be 195.6 and 49.4~mJ/mol K$^2$ in CeRhAl$_4$Si$_2$ and CeIrAl$_4$Si$_2$, respectively classifying these materials as moderate heavy fermion compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا