ﻻ يوجد ملخص باللغة العربية
Ferromagnetic mg has unique magnetoelastic properties. These are investigated by detailed computational studies of the phonon dispersion curves for the non-modulated cubic Ltw and tetragonal structures. For the Ltw structure, a complete softening of the transverse acoustic mode has been found around the wave vector $mathbf{q}=[1/3,1/3,0](2 pi/a)$. The softening of this TA{2} phonon mode leads to the premartensitic modulated super-structure observed experimentally. Further phonon anomalies, related to other structural transformations in mg, have also been found and examined. These anomalies appear to be due to the coupling of particular acoustic phonon modes and optical modes derived from Ni.
Magnetic shape memory Heusler alloys are multiferroics stabilized by the correlations between electronic, magnetic and structural order. To study these correlations we use time resolved x-ray diffraction and magneto-optical Kerr effect experiments to
We report a detailed investigation of the Ni$_{2}$MnGa shape memory alloy through magnetic, electronic, and thermal measurements. Our measurements of the anomalous Nernst effect (ANE) reveal that this technique is very sensitive to the onset of the p
Ultraviolet-photoemission (UPS) measurements and supporting specific-heat, thermal-expansion, resistivity and magnetic-moment measurements are reported for the magnetic shape-memory alloy Ni$_2$MnGa over the temperature range $100K < T < 250K$. All m
Paramagnetic molecules can show long spin-coherence times, which make them good candidates as quantum bits. Reducing the efficiency of the spin-phonon interaction is the primary challenge towards achieving long coherence times over a wide temperature
Different stoichiometric configurations of graphane and graphene fluoride are investigated within density functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various c