ﻻ يوجد ملخص باللغة العربية
We have observed signatures of resonant tunneling in an Al three-junction qubit, inductively coupled to a Nb LC tank circuit. The resonant properties of the tank oscillator are sensitive to the effective susceptibility (or inductance) of the qubit, which changes drastically as its flux states pass through degeneracy. The tunneling amplitude is estimated from the data. We find good agreement with the theoretical predictions in the regime of their validity.
In this paper we discuss solid-state nanoelectronic realizations of Josephson flux qubits with large tunneling amplitude between the two macroscopic states. The latter can be controlled via the height and wells form of the potential barrier, which is
Quantum state detectors based on switching of hysteretic Josephson junctions biased close to their critical current are simple to use but have strong back-action. We show that the back-action of a DC-switching detector can be considerably reduced by
We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA and timing of the data acquisition, we observe the Rabi oscillations with a
We show that the three-junction SQUID device designed for the Josephson flux qubit can be used to study quantum chaos when operated at high energies. In the parameter region where the system is classically chaotic we analyze the spectral statistics.
We propose to investigate flux qubits by the impedance measurement technique (IMT), currently used to determine the current--phase relation in Josephson junctions. We analyze in detail the case of a high-quality tank circuit coupled to a persistent-c