ترغب بنشر مسار تعليمي؟ اضغط هنا

Persistent currents in carbon nanotubes based rings

105   0   0.0 ( 0 )
 نشر من قبل Sylvain Latil
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Latil




اسأل ChatGPT حول البحث

Persistent currents in rings constructed from carbon nanotubes are investigated theoretically. After studying the contribution of finite temperature or quenched disorder on covalent rings, the complexity due to the bundle packing is addressed. The case of interacting nanotori and self-interacting coiled nanotubes are analyzed in details in relation with experiments.


قيم البحث

اقرأ أيضاً

We demonstrate theoretically that an off-resonant circularly polarized electromagnetic field can induce a persistent current in carbon nanotubes, which corresponds to electron rotation about the nanotube axis. As a consequence, the nanotubes acquire magnetic moment along the axis, which depends on their crystal structure and can be detected in state-of-the-art measurements. This effect and related phenomena are analyzed within the developed Floquet theory describing the electronic properties of the nanotubes irradiated by the field.
We use ab initio total-energy calculations to predict the existence of polarons in semiconducting carbon nanotubes (CNTs). We find that the CNTs band edge energies vary linearly and the elastic energy increases quadratically with both radial and with axial distortions, leading to the spontaneous formation of polarons. Using a continuum model parametrized by the ab initio calculations, we estimate electron and hole polaron lengths, energies and effective masses and analyze their complex dependence on CNT geometry. Implications of polaron effects on recently observed electro- and opto-mechanical behavior of CNTs are discussed.
We have applied the quantum Monte Carlo method and tight-binding modelling to calculate the binding energy of biexcitons in semiconductor carbon nanotubes for a wide range of diameters and chiralities. For typical nanotube diameters we find that biex citon binding energies are much larger than previously predicted from variational methods, which easily brings the biexciton binding energy above the room temperature threshold.
We perform ab initio calculations of charged graphene and single-wall carbon nanotubes (CNTs). A wealth of electromechanical behaviors is obtained: (1) Both nanotubes and graphene expand upon electron injection. (2) Upon hole injection, metallic nano tubes and graphene display a non-monotonic behavior: Upon increasing hole densities, the lattice constant initially contracts, reaches a minimum, and then starts to expand. The hole densities at minimum lattice constants are 0.3 |e|/atom for graphene and between 0.1 and 0.3 |e|/atom for the metallic nanotubes studied. (3)Semiconducting CNTs with small diameters (d <~ 20 A) always expand upon hole injection; (4) Semiconducting CNTs with large diameters (d >~ 20 A) display a behavior intermediate between those of metallic and large-gap CNTs. (5) The strain versus extra charge displays a linear plus power-law behavior, with characteristic exponents for graphene, metallic, and semiconducting CNTs. All these features are physically understood within a simple tight-binding total-energy model.
Light emission from carbon nanotubes is expected to be dominated by excitonic recombination. Here we calculate the properties of excitons in nanotubes embedded in a dielectric, for a wide range of tube radii and dielectric environments. We find that simple scaling relationships give a good description of the binding energy, exciton size, and oscillator strength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا