ترغب بنشر مسار تعليمي؟ اضغط هنا

Damped orbital excitations in the titanates

56   0   0.0 ( 0 )
 نشر من قبل Kikoin Konstantin
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A possible mechanism for the removal of the orbital degeneracy in RTiO3 (where R=La, Y, ...) is considered. The calculation is based on the Kugel-Khomskii Hamiltonian for electrons residing in the t2g orbitals of the Ti ions, and uses a self-consistent pe rturbation expansion in the interaction between the orbital and the spin degrees of freedom. The latter are assumed to be ordered in a Neel state, brought about by delicate interactions that are not included in the Kugel-Khomskii Hamiltonian. Within our model calculations, each of the t2g bands is found to acquire a finite, temperature-dependent dispersion, that lifts the orbital degeneracy. The orbital excitations are found to be heavily damped over a rather wide band. Consequently, they do not participate as a separate branch of excitations in the low-temperature thermodynamics.e



قيم البحث

اقرأ أيضاً

Raman scattering is used to observe pronounced electronic excitations around 230 meV - well above the two-phonon range - in the Mott insulators LaTiO$_3$ and YTiO$_3$. Based on the temperature, polarization, and photon energy dependence, the modes ar e identified as orbital excitations. The observed profiles bear a striking resemblance to magnetic Raman modes in the insulating parent compounds of the superconducting cuprates, indicating an unanticipated universality of the electronic excitations in transition metal oxides.
By means of neutron scattering we have determined new branches of magnetic excitations in orbitally active CoO (TN=290 K) up to 15 THz and for temperatures from 6 K to 450 K. Data were taken in the (111) direction in six single-crystal zones. From th e dependence on temperature and Q we have identified several branches of magnetic excitation. We describe a model for the coupled orbital and spin states of Co2+ subject to a crystal field and tetragonal distortion.
Combining macroscopic and diffraction methods we have studied the electric, magnetic and struc- tural properties of RE_(1-x)Ca_xTiO_3 (RE=Y, Er, Lu) focusing on the concentration range near the metal-insulator transition. The insulating phase, which is stabilized by a smaller rare-earth ionic ra- dius, exhibits charge order with a predominant occupation of the dxy orbital. The charge and orbital ordering explains the broad stability range of the insulating state in RE_(1-x)Ca_xTiO_3 with smaller rare-earth ions. The strong modulation of the Ti-O bond distances indicates sizeable modulation of the electric charge.
72 - O. Ivashko , N. E. Shaik , X. Lu 2017
A resonant inelastic x-ray scattering (RIXS) study of overdamped spin-excitations in slightly underdoped La$_{2-x}$Sr$_{x}$CuO$_4$ (LSCO) with $x=0.12$ and $0.145$ is presented. Three high-symmetry directions have been investigated: (1) the antinodal $(0,0)rightarrow (1/2,0)$, (2) the nodal $(0,0)rightarrow (1/4,1/4)$ and (3) the zone boundary direction $(1/2,0)rightarrow (1/4,1/4)$ connecting these two. The overdamped excitations exhibit strong dispersions along (1) and (3), whereas a much more modest dispersion is found along (2). This is in strong contrast to the undoped compound La$_{2}$CuO$_4$ (LCO) for which the strongest dispersions are found along (1) and (2). The $t-t^{prime}-t^{primeprime}-U$ Hubbard model used to explain the excitation spectrum of LCO predicts $-$ for constant $U/t$ $-$ that the dispersion along (3) scales with $(t^{prime}/t)^2$. However, the diagonal hopping $t^{prime}$ extracted on LSCO using single-band models is low ($t^{prime}/tsim-0.16$) and decreasing with doping. We therefore invoked a two-orbital ($d_{x^2-y^2}$ and $d_{z^2}$) model which implies that $t^{prime}$ is enhanced. This effect acts to enhance the zone-boundary dispersion within the Hubbard model. We thus conclude that hybridization of $d_{x^2-y^2}$ and $d_{z^2}$ states has a significant impact on the zone-boundary dispersion in LSCO.
$Fe_3O_4$ is a mixed-valence strongly correlated transition metal oxide which displays the intriguing metal to insulator Verwey transition. Here we investigate the electronic and magnetic structure of $Fe_3O_4$ by a unique combination of high-resolut ion Fe 2p3d resonant inelastic scattering magnetic circular (RIXS-MCD) and magnetic linear (RIXS-MLD) dichroism. We show that by coupling the site selectivity of RIXS with the magnetic selectivity imposed by the incident polarization handedness, we can unambiguously identify spin-flip excitations and quantify the exchange interaction of the different sublattices. Furthermore, our RIXS-MLD measurements show spin-orbital excitations that exhibit strong polarization and magnetic field dependence. Guided by theoretical simulations, we reveal that the angular dependence arises from a strong interplay between trigonal crystal-field, magnetic exchange and spin-orbit interaction at the nominal $Fe^{2+}$ sites. Our results highlight the capabilities of RIXS magnetic dichroism studies to investigate the ground state of complex systems where in-equivalent sites and bonds are simultaneously present.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا