ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of the onset of strong scattering on high frequency acoustic phonons in densified silica glass

118   0   0.0 ( 0 )
 نشر من قبل Benoit Ruffle
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Ruffle




اسأل ChatGPT حول البحث

The linewidth of longitudinal acoustic waves in densified silica glass is obtained by inelastic x-ray scattering. It increases with a high power alpha of the frequency up to a crossover where the waves experience strong scattering. We find that alpha is at least 4, and probably larger. Resonance and hybridization of acoustic waves with the boson-peak modes seems to be a more likely explanation for these findings than Rayleigh scattering from disorder.

قيم البحث

اقرأ أيضاً

Spectroscopic results on low frequency excitations of densified silica are presented and related to characteristic thermal properties of glasses. The end of the longitudinal acoustic branch is marked by a rapid increase of the Brillouin linewidth wit h the scattering vector. This rapid growth saturates at a crossover frequency Omega_co which nearly coincides with the center of the boson peak. The latter is clearly due to additional optic-like excitations related to nearly rigid SiO_4 librations as indicated by hyper-Raman scattering. Whether the onset of strong scattering is best described by hybridization of acoustic modes with these librations, by their elastic scattering (Rayleigh scattering) on the local excitations, or by soft potentials remains to be settled.
86 - R. DellAnna 1998
We report a molecular dynamics simulation study of the sound waves in vitreous silica in the mesoscopic exchanged momentum range. The calculated dynamical structure factors are in quantitative agreement with recent experimental inelastic neutron and x-ray scattering data. The analysis of the longitudinal and transverse current spectra allows to discriminate between opposite interpretations of the existing experimental data in favour of the propagating nature of the high frequency sound waves.
New temperature dependent inelastic x-ray (IXS) and Raman (RS) scattering data are compared to each other and with existing inelastic neutron scattering data in vitreous silica (v-SiO_2), in the 300 - 1775 K region. The IXS data show collective propa gating excitations up to Q=3.5 nm^-1. The temperature behaviour of the excitations at Q=1.6 nm^-1 matches that of the boson peak found in INS and RS. This supports the acoustic origin of the excess of vibrational states giving rise to the boson peak in this glass.
The high frequency dynamics of glassy Selenium has been studied by Inelastic X-ray Scattering at beamline BL35XU (SPring-8). The high quality of the data allows one to pinpoint the existence of a dispersing acoustic mode for wavevectors ($Q$) of $1.5 <Q<12.5$ nm$^{-1}$, helping to clarify a previous contradiction between experimental and numerical results. The sound velocity shows a positive dispersion, exceeding the hydrodynamic value by $approx$ 10% at $Q<3.5$ nm$^{-1}$. The $Q^2$ dependence of the sound attenuation $Gamma(Q)$, reported for other glasses, is found to be the low-$Q$ limit of a more general $Gamma(Q) propto Omega(Q)^2$ law which applies also to the higher $Q$ region, where $Omega(Q)propto Q$ no longer holds.
The position and strength of the boson peak in silica glass vary considerably with temperature $T$. Such variations cannot be explained solely with changes in the Debye energy. New Brillouin scattering measurements are presented which allow determini ng the $T$-dependence of unrelaxed acoustic velocities. Using a velocity based on the bulk modulus, scaling exponents are found which agree with the soft-potential model. The unrelaxed bulk modulus thus appears to be a good measure for the structural evolution of silica with $T$ and to set the energy scale for the soft potentials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا