ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing two-subband systems in a quantizing magnetic field with non-equilibrium phonons

55   0   0.0 ( 0 )
 نشر من قبل Mikhail Portnoi
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose to use phonon absorption spectroscopy to study many-body gaps and phases of two-subband heterostructures in the quantum Hall regime. Implications of the spin-orbit interaction for phonon absorption in this system are considered.


قيم البحث

اقرأ أيضاً

60 - A.M. Rudin , I.L. Aleiner , 1998
We study local density of electron states of a two-dimentional conductor with a smooth disorder potential in a non-quantizing magnetic field, which does not cause the standart de Haas-van Alphen oscillations. It is found, that despite the influence o f such ``classical magnetic field on the average electron density of states (DOS) is negligibly small, it does produce a significant effect on the DOS correlations. The corresponding correlation function exhibits oscillations with the characteristic period of cyclotron quantum $hbaromega_c$.
Two-dimensional topological insulators are characterized by gapped bulk states and gapless helical edge states, i.e. time-reversal symmetric edge states accommodating a pair of counter-propagating electrons. An external magnetic field breaks the time -reversal symmetry. What happens to the edge states in this case? In this paper we analyze the edge-state spectrum and longitudinal conductance in a two-dimensional topological insulator subject to a quantizing magnetic field. We show that the helical edge states exist also in this case. The strong magnetic field modifies the group velocities of the counter-propagating channels which are no longer identical. The helical edge states with different group velocities are particularly prone to get coupled via backscattering, which leads to the suppression of the longitudinal edge magnetoconductance.
The effect of quantizing magnetic field on the electron transport is investigated in a two dimensional topological insulator (2D TI) based on a 8 nm (013) HgTe quantum well (QW). The local resistance behavior is indicative of a metal-insulator transi tion at $Bapprox 6$ T. On the whole the experimental data agrees with the theory according to which the helical edge states transport in a 2D TI persists from zero up to a critical magnetic field $B_c$ after which a gap opens up in the 2D TI spectrum.
84 - G. Catelani , D. M. Basko 2018
We study the effect of non-equilibrium quasiparticles on the operation of a superconducting device (a qubit or a resonator), including heating of the quasiparticles by the device operation. Focusing on the competition between heating via low-frequenc y photon absorption and cooling via photon and phonon emission, we obtain a remarkably simple non-thermal stationary solution of the kinetic equation for the quasiparticle distribution function. We estimate the influence of quasiparticles on relaxation and excitation rates for transmon qubits, and relate our findings to recent experiments.
We investigate the double-layer electron system in a parabolic quantum well at filling factor $ u=2$ in a tilted magnetic field using capacitance spectroscopy. The competition between two ground states is found at the Zeeman splitting appreciably sma ller than the symmetric-antisymmetric splitting. Although at the transition point the system breaks up into domains of the two competing states, the activation energy turns out to be finite, signaling the occurrence of a new insulator-insulator quantum phase transition. We interpret the obtained results in terms of a predicted canted antiferromagnetic phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا