ﻻ يوجد ملخص باللغة العربية
Neutron powder diffraction has been used to characterize a sample of C-substituted MgB2 synthesized from Mg and B4C (with isotopically enriched 11B). The sample is multiphase, with the major phase [73.4(1) wt.%] being Mg(B1-xCx)2 with x=0.10(2). Minor phases include MgB2C2, Mg, and MgO. The major Mg(B1-xCx)2 phase displays diffraction peak widths as sharp as for pure MgB2, indicating good C homogeneity. There is no evidence for ordering of the substituted C atoms or distortion of the host structure other than contraction of the a axis and slight expansion of the c axis. The observed changes in lattice parameters vs. C concentration provide a means for estimating the C concentration in other Mg(B1-xCx)2 samples. The reduction in Tc resulting from 10% C substitution is much larger than previously reported, suggesting that previous reports of the C concentration in Mg(B1-xCx)2 are overestimated. The Mg site occupancy is determined to be 0.990(4) which is consistent with full Mg occupancy. Given these results, the stoichiometry Mg(B0.9C0.1)2 should be used by future attempts (band structural or otherwise) to explain (i) the dramatic suppression of Tc (Tc ~ = 22 K) and (ii) the persistence of the two-superconducting-gap feature in the specific heat data.
The evolution of the superconducting properties of the carbon-doped MgB2 superconductors, MgB(2-x)Cx (x= 0.02, 0.04, 0.06) have been investigated by the transverse-field muon spin rotation (TF-muSR) technique. The low-temperature depolarisation rate,
We have studied structural and superconducting properties of MgB2 thin films doped with carbon during the hybrid physical-chemical vapor deposition process. A carbon-containing metalorganic precursor bis(cyclopentadienyl)magnesium was added to the ca
The discovery of superconductor in magnesium diboride MgB2 with high Tc (39 K) has raised some challenging issues; whether this new superconductor resembles a high temperature cuprate superconductor(HTS) or a low temperature metallic superconductor;
The high field magnetization and magneto transport measurements are carried out to determine the critical superconducting parameters of MgB2-xCx system. The synthesized samples are pure phase and the lattice parameters evaluation is carried out using
The superconducting phase diagram of MgB2 was determined from magnetization, magneto-transport and the first single-crystal specific heat measurements. A zero-temperature in-plane coherence length of 8 nm is determined. The superconducting anisotropy