ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of the Energy Structure and Adiabatic Magnetization Process of V15

98   0   0.0 ( 0 )
 نشر من قبل Indranil Rudra
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Indranil Rudra




اسأل ChatGPT حول البحث

The energy structure of the V$_{15}$ is studied using exact diagonalization methods, and the adiabatic changes of the magnetization in the system with the sweeping field are investigated. We confirm that the Dzyaloshinskii-Moriya interaction leads to an energy gap which allows the adiabatic change of the magnetization which has been found experimentally by Chiorescu et al., and also predict novel dynamics of the magnetization due to this energy level structure.



قيم البحث

اقرأ أيضاً

A full energy spectrum of the spin-1/2 Heisenberg cubic cluster is used to investigate a low-temperature magnetization process and adiabatic demagnetization of this zero-dimensional 2x2x2 quantum spin system. It is shown that the antiferromagnetic sp in-1/2 Heisenberg cube exhibits at low enough temperatures a stepwise magnetization curve with four intermediate plateaux at zero, one quarter, one half, and three quarters of the saturation magnetization. We have also found the enhanced magnetocaloric effect close to level-crossing fields that determine transitions between the intermediate plateaux.
We apply degenerate perturbation theory to investigate the effects of magnetic anisotropy in the magnetic molecule V15. Magnetic anisotropy is introduced via Dzyaloshinskii-Moriya (DM) interaction in the full Hilbert space of the system. Our model pr ovides an explanation for the rounding of transitions in the magnetization as a function of applied field at low temperature, from which an estimate for the DM interaction is found. We find that the calculated energy differences of the lowest energy states are consistent with the available data. Our model also offers a novel explanation for the hysteretic nature of the time-dependent magnetization data.
Comment on the paper: Magnetization Process of Single Molecule Magnets at Low Temperatures of J.F.Fernandez and J.J.Alonso (PRL 91, 047202 (2003)).
The axial magnetic effect (AME) is one of the anomalous transport phenomena in which the energy current is induced by an axial magnetic field. Here, we numerically study the AME for the relativistic Wilson fermion in the axial magnetic field and a tw isted Dirac semimetal. The AME current density inside the bulk is nonzero, and particularly in the low-energy regime for the former model, it is explained by the field-theoretical results without any fitting parameter. However, for both models, the average AME current density vanishes owing to the surface contribution. The axial gauge field is regarded as the spatially modulated (effective) Zeeman field and induces the spatially modulated energy magnetization. The AME is attributed to the magnetization energy current and hence cannot be observed in transport experiments.
We present a time-resolved study of the magnetization dynamics in a microstructured Cr$|$Heusler$|$Pt waveguide driven by the Spin-Hall-Effect and the Spin-Transfer-Torque effect via short current pulses. In particular, we focus on the determination of the threshold current at which the spin-wave damping is compensated. We have developed a novel method based on the temporal evolution of the magnon density at the beginning of an applied current pulse at which the magnon density deviates from the thermal level. Since this method does not depend on the signal-to-noise ratio, it allows for a robust and reliable determination of the threshold current which is important for the characterization of any future application based on the Spin-Transfer-Torque effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا