ﻻ يوجد ملخص باللغة العربية
Using a classical and quantum mechanical analysis, we show that the magnetic field gives rise to dynamical symmetries of a three-dimensional axially symmetric two-electron quantum dot with a parabolic confinement. These symmetries manifest themselves as near-degeneracies in the quantum spectrum at specific values of the magnetic field and are robust at any strength of the electron-electron interaction.
We use the entanglement measure to study the evolution of quantum correlations in two-electron axially-symmetric parabolic quantum dots under a perpendicular magnetic field. We found that the entanglement indicates on the shape transition in the dens
We present a thorough analysis of the electron density distribution (shape) of two electrons, confined in the three-dimensional harmonic oscillator potential, as a function of the perpendicular magnetic field.Explicit algebraic expressions are derive
A cornerstone of quantum mechanics is the characterisation of symmetries provided by Wigners theorem. Wigners theorem establishes that every symmetry of the quantum state space must be either a unitary transformation, or an antiunitary transformation
For every ADE Dynkin diagram, we give a realization, in terms of usual fusion algebras (graph algebras), of the algebra of quantum symmetries described by the associated Ocneanu graph. We give explicitly, in each case, the list of the corresponding twisted partition functions
We extend the class of QM problems which permit for quasi-exact solutions. Specifically, we consider planar motion of two interacting charges in a constant uniform magnetic field. While Turbiner and Escobar-Ruiz (2013) addressed the case of the Coulo