ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrodynamic theory for dissipative hard spheres with multi-particle interactions

77   0   0.0 ( 0 )
 نشر من قبل S. Luding
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extensions to kinetic theory and hydrodynamic models are proposed that account for the existence of multi-particle contacts. In the presence of multi-particle contacts (involving elastic, reversible, potential contact energy), dissipation of the translational (kinetic) energy is reduced and a class of different models lead to deviations from the classical inelastic hard sphere (IHS) homogeneous cooling state (HCS), as examined here. The theoretical results are found to be in perfect agreement with the numerical simulations.



قيم البحث

اقرأ أيضاً

A system of hard spheres exhibits physics that is controlled only by their density. This comes about because the interaction energy is either infinite or zero, so all allowed configurations have exactly the same energy. The low density phase is liqui d, while the high density phase is crystalline, an example of order by disorder as it is driven purely by entropic considerations. Here we study a family of hard spin models, which we call hardcore spin models, where we replace the translational degrees of freedom of hard spheres with the orientational degrees of freedom of lattice spins. Their hardcore interaction serves analogously to divide configurations of the many spin system into allowed and disallowed sectors. We present detailed results on the square lattice in $d=2$ for a set of models with $mathbb{Z}_n$ symmetry, which generalize Potts models, and their $U(1)$ limits, for ferromagnetic and antiferromagnetic senses of the interaction, which we refer to as exclusion and inclusion models. As the exclusion/inclusion angles are varied, we find a Kosterlitz-Thouless phase transition between a disordered phase and an ordered phase with quasi-long-ranged order, which is the form order by disorder takes in these systems. These results follow from a set of height representations, an ergodic cluster algorithm, and transfer matrix calculations.
We develop an extension of the original Reiss-Frisch-Lebowitz scaled particle theory that can serve as a predictive method for the hard sphere pair correlation function g(r). The reversible cavity creation work is analyzed both for a single spherical cavity of arbitrary size, as well as for a pair of identical such spherical cavities with variable center-to-center separation. These quantities lead directly to prediction of g(r). Smooth connection conditions have been identified between the small-cavity situation where the work can be exactly and completely expressed in terms of g(r), and the large-cavity regime where macroscopic properties become relevant. Closure conditions emerge which produce a nonlinear integral equation that must be satisfied by the pair correlation function. This integral equation has a structure which straightforwardly generates a solution that is a power series in density. The results of this series replicate the exact second and third virial coefficients for the hard sphere system via the contact value of the pair correlation function. The predicted fourth virial coefficient is approximately 0.6 percent lower than the known exact value. Detailed numerical analysis of the nonlinear integral equation has been deferred to the sequel (following paper)
131 - Swaroop Chatterjee , 2006
We use the extension of scaled particle theory (ESPT) presented in the accompanying paper [Stillinger et al. J. Chem. Phys. xxx, xxx (2007)] to calculate numerically pair correlation function of the hard sphere fluid over the density range $0leq rhos igma^3leq 0.96$. Comparison with computer simulation results reveals that the new theory is able to capture accurately the fluids structure across the entire density range examined. The pressure predicted via the virial route is systematically lower than simulation results, while that obtained using the compressibility route is lower than simulation predictions for $rhosigma^3leq 0.67$ and higher than simulation predictions for $rhosigma^3geq 0.67$. Numerical predictions are also presented for the surface tension and Tolman length of the hard sphere fluid.
This article presents a new numerical scheme for the discretization of dissipative particle dynamics with conserved energy. The key idea is to reduce elementary pairwise stochastic dynamics (either fluctuation/dissipation or thermal conduction) to ef fective single-variable dynamics, and to approximate the solution of these dynamics with one step of a Metropolis-Hastings algorithm. This ensures by construction that no negative internal energies are encountered during the simulation, and hence allows to increase the admissible timesteps to integrate the dynamics, even for systems with small heat capacities. Stability is only limited by the Hamiltonian part of the dynamics, which suggests resorting to multiple timestep strategies where the stochastic part is integrated less frequently than the Hamiltonian one.
We use a two-level simulation method to analyse the critical point associated with demixing of binary hard sphere mixtures. The method exploits an accurate coarse-grained model with two-body and three-body effective interactions. Using this model wit hin the two-level methodology allows computation of properties of the full (fine-grained) mixture. The critical point is located by computing the probability distribution for the number of large particles in the grand canonical ensemble, and matching to the universal form for the $3d$ Ising universality class. The results have a strong and unexpected dependence on the size ratio between large and small particles, which is related to three-body effective interactions, and the geometry of the underlying hard sphere packings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا