ﻻ يوجد ملخص باللغة العربية
Extensions to kinetic theory and hydrodynamic models are proposed that account for the existence of multi-particle contacts. In the presence of multi-particle contacts (involving elastic, reversible, potential contact energy), dissipation of the translational (kinetic) energy is reduced and a class of different models lead to deviations from the classical inelastic hard sphere (IHS) homogeneous cooling state (HCS), as examined here. The theoretical results are found to be in perfect agreement with the numerical simulations.
A system of hard spheres exhibits physics that is controlled only by their density. This comes about because the interaction energy is either infinite or zero, so all allowed configurations have exactly the same energy. The low density phase is liqui
We develop an extension of the original Reiss-Frisch-Lebowitz scaled particle theory that can serve as a predictive method for the hard sphere pair correlation function g(r). The reversible cavity creation work is analyzed both for a single spherical
We use the extension of scaled particle theory (ESPT) presented in the accompanying paper [Stillinger et al. J. Chem. Phys. xxx, xxx (2007)] to calculate numerically pair correlation function of the hard sphere fluid over the density range $0leq rhos
This article presents a new numerical scheme for the discretization of dissipative particle dynamics with conserved energy. The key idea is to reduce elementary pairwise stochastic dynamics (either fluctuation/dissipation or thermal conduction) to ef
We use a two-level simulation method to analyse the critical point associated with demixing of binary hard sphere mixtures. The method exploits an accurate coarse-grained model with two-body and three-body effective interactions. Using this model wit