ﻻ يوجد ملخص باللغة العربية
It has been shown that superconducting vortices with antiferromagnetic cores arise within Zhangs SO(5) model of high temperature supercondictivity. Similar phenomena where the symmetry is not restored in the core of the vortex was discussed by Witten in the case of cosmic strings. It was also suggested that such strings can form stable vortons, which are closed loops of such vortices. Motivated by this analogy, in following we will show that loops of such vortices in the SO(5) model of high T_c superconductivity can exist as classically stable objects, stabilized by the presence of conserved charges trapped on the vortex core. These objects carry angular momentum which counteracts the effect of the string tension that causes the loops to shrink. The existence of such quasiparticles, which are called vortons, could be interesting for the physics of high temperature superconductors. We also speculate that the phase transition between superconducting and antiferromagnetic phases at zero external magnetic field when the doping parameter changes is associated with vortons.
We study the energetics of superconducting vortices in the SO(5) model for high-$T_c$ materials proposed by Zhang. We show that for a wide range of parameters normally corresponding to type II superconductivity, the free energy per unit flux $FF(m)$
The key to unraveling the nature of high-temperature superconductivity (HTS) lies in resolving the enigma of the pseudogap state. The pseudogap state in the underdoped region is a distinct thermodynamic phase characterized by nematicity, temperature-
The discovery of high temperature superconductivity in the cuprates in 1986 triggered a spectacular outpouring of creative and innovative scientific inquiry. Much has been learned over the ensuing 28 years about the novel forms of quantum matter that
The distinction between type I and type II superconductivity is re-examined in the context of the SO(5) model recently put forth by Zhang. Whereas in conventional superconductivity only one parameter (the Ginzburg-Landau parameter $kappa$) characteri
Subsequent to our recent report of SDW type transition at 190 K and antiferromagnetic order below 20 K in EuFe2As2, we have studied the effect of K-doping on the SDW transition at high temperature and AF order at low temperature. 50% K doping suppres