ترغب بنشر مسار تعليمي؟ اضغط هنا

Nickel Antidot Arrays on Anodic Alumina Substrates

73   0   0.0 ( 0 )
 نشر من قبل Zhili Xiao
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large area nickel antidot arrays with density up to 10^10 /cm^2 have been fabricated by depositing nickel onto anodic aluminum oxide membranes that contain lattices of nanopores. Electron microscopy images show a high degree of order of the antidot arrays. Various sizes and shapes of the antidots were observed with increasing thickness of the deposited nickel. New features appear in the antidot arrays in both magnetization and transport measurements when the external magnetic field is parallel to the current direction, including an enhancement and a nonmonotonous field dependence of the magnetoresistance, larger values of the coercive field and remanence moment, and smaller saturation field.



قيم البحث

اقرأ أيضاً

We demonstrate a new fabrication process for hybrid semiconductor-superconductor heterostructures based on anodic oxidation (AO), allowing controlled thinning of epitaxial Al films. Structural and transport studies of oxidized epitaxial Al films grow n on insulating GaAs substrates reveal spatial non-uniformity and enhanced critical temperature and magnetic fields. Oxidation of epitaxial Al on hybrid InAs heterostructures with a conducting quantum well show similarly enhanced superconducting properties transferred to the two-dimensional electron gas (2DEG) by proximity effect, with critical perpendicular magnetic fields up to 3.5 T. An insulating AlOx film, that passivates the heterostructure from exposure to air, is obtained by complete oxidation of the Al. It simultaneously removes the need to strip Al which damages the underlying semiconductor. AO passivation yielded 2DEG mobilities two times higher than similar devices with Al removed by wet etching. An AO-passivated Hall bar showed quantum Hall features emerging at a transverse field of 2.5 T, below the critical transverse field of thinned films, eventually allowing transparent coupling of quantum Hall effect and superconductivity. AO thinning and passivation are compatible with standard lithographic techniques, giving lateral resolution below <50 nm. We demonstrate local patterning of AO by realizing a semiconductor-based Josephson junction operating up to 0.3 T perpendicular.
The graphene-enhanced Raman scattering of Rhodamine 6G molecules on pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates was studied. The uniformity of the Raman signal enhancement was studied by making large Raman maps. The rel ative enhancement of the Raman signal is demonstrated to be dependent on the functional groups, which was rationalized by the different doping levels of pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates. The impact of the Fermi energy of graphene and the phonon energy of the molecules was considered together for the first time in order to explain the enhancement. Such approach enables to understand the enhancement without assuming anything about the uniformity of the molecules on the graphene surface. The agreement between the theory and our measured data was further demonstrated by varying excitation energy.
In superconducting thin films, engineered lattice of antidots (holes) act as an array of columnar pinning sites for the vortices and thus lead to vortex matching phenomena at commensurate fields guided by the lattice spacing. The strength and nature of vortex pinning is determined by the geometrical characteristics of the antidot lattice (such as the lattice spacing $a_0$, antidot diameter $d$, lattice symmetry, orientation, etc) along with the characteristic length scales of the superconducting thin films, viz., the coherence length ($xi$) and the penetration depth ($lambda$). There are at least two competing scenarios: (i) multiple vortices sit on each of the antidots at a higher matching period, and, (ii) there is nucleation of vortices at the interstitial sites at higher matching periods. Furthermore it is also possible for the nucleated interstitial vortices to reorder under suitable conditions. We present our experimental results on NbN antidot arrays in the light of the above scenarios.
A method was developed to calculate the free energy of 2D materials on substrates and was demonstrated by the system of graphene and {gamma}-graphyne on copper substrate. The method works at least 3 orders faster than state-of-the-art algorithms, and the accuracy was tested by molecular dynamics simulations, showing that the precision for calculations of the internal energy achieves up to 0.03% in a temperature range from 100 to 1300K. As expected, the calculated the free energy of a graphene sheet on Cu (111) or Ni (111) surface in a temperature range up to 3000K is always smaller than the one of a {gamma}-graphyne sheet with the same number of C atoms, which is consistent with the fact that growth of graphene on the substrates is much easier than {gamma}-graphyne.
In graphene growth, island symmetry can become lower than the intrinsic symmetries of both graphene and the substrate. First-principles calculations and Monte Carlo modeling explain the shapes observed in our experiments and earlier studies for vario us metal surface symmetries. For equilibrium shape, edge energy variations $delta E$ manifest in distorted hexagons with different ground-state edge structures. In growth or nucleation, energy variation enters exponentially as $sim e^{delta E / k_{B} T}$, strongly amplifying the symmetry breaking, up to completely changing the shapes to triangular, ribbon-like, or rhombic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا