ﻻ يوجد ملخص باللغة العربية
Time-resolved Kerr microscopy is used to study the excitations of individual micron- scale ferromagnetic thin film elements in their remnant state. Thin (18 nm) square elements with edge dimensions between 1 and 10 $mu$m form closure domain structures with 90 degree Neel walls between domains. We identify two classes of excitations in these systems. The first corresponds to precession of the magnetization about the local demagnetizing field in each quadrant, while the second excitation is localized in the domain walls. Two modes are also identified in ferromagnetic disks with thicknesses of 60 nm and diameters from 2 $mu$m down to 500 nm. The equilibrium state of each disk is a vortex with a singularity at the center. As in the squares, the higher frequency mode is due to precession about the internal field, but in this case the lower frequency mode corresponds to gyrotropic motion of the entire vortex. These results demonstrate clearly the existence of well-defined excitations in inhomogeneously magnetized microstructures.
Hexagonal manganites REMnO3 (RE, rare earths) have attracted significant attention due to their potential applications as multiferroic materials and the intriguing physics associated with the topological defects. The two-dimensional (2D) and 3D domai
Time-resolved soft X-ray transmission microscopy is applied to image the current-induced resonant dynamics of the magnetic vortex core realized in a micronsized Permalloy disk. The high spatial resolution better than 25 nm enables us to observe the r
This paper has been withdrawn by the author due to a serious errors in the calculations.
Through numerical solution of the time-dependent Schrodinger equation, we demonstrate that magnetic chains with uniaxial anisotropy support stable structures, separating ferromagnetic domains of opposite magnetization. These structures, domain walls
Strong vortex pinning in FeSe could be useful for technological applications and could provide clues about the coexistence of superconductivity and nematicity. To characterize the pinning of individual, isolated vortices, we simultaneously apply a lo