ﻻ يوجد ملخص باللغة العربية
A dressed basis is used to calculate the dynamics of three-wave mixing between Bogoliubov quasi-particles in a Bose condensate. Due to the observed oscillations between different momenta modes, an energy splitting, analogous to the optical Mollow triplet, appears in the Beliaev damping spectrum of the excitations from the oscillating modes.
A vortex in a condensate in a nonspherical trapping potential will in general experience a torque. The torque will induce tilting of the direction of the vortex axis. We observe this behavior experimentally and show that by applying small distortions
Surface modes in a Bose-Einstein condensate of sodium atoms have been studied. We observed excitations of standing and rotating quadrupolar and octopolar modes. The modes were excited with high spatial and temporal resolution using the optical dipole
We have developed an evaporative cooling technique that accelerates the circulation of an ultra-cold $^{87}$Rb gas, confined in a static harmonic potential. As a normal gas is evaporatively spun up and cooled below quantum degeneracy, it is found to
Bragg diffraction of atoms by light waves has been used to create high momentum components in a Bose-Einstein condensate. Collisions between atoms from two distinct momentum wavepackets cause elastic scattering that can remove a significant fraction
We study a binary mixture of polar chiral (counterclockwise or clockwise) active particles in a two-dimensional box with periodic boundary conditions. Beside the excluded volume interactions between particles, particles are also subject to the polar