ﻻ يوجد ملخص باللغة العربية
It is shown that the critical current density of high-Tc wires can be greatly enhanced by using a threefold approach, which consists of grain alignment, doping, and optimization of the grain architecture. According to model calculations, current densities of 4x10^6 A/cm2 can be achieved for an average grain alignment of 10 degree at 77K. Based on this approach, a road to competitive high-Tc cables is proposed.
The purpose of this article is to discuss a view concerning key datasets of the properties of grain boundaries in high-Tc superconductors that was recently expressed in Ref. 1. The reference also criticizes our research. Using examples I disprove this criticism.
For many applications of polycrystalline high-Tc superconductors the small critical currents of the grain boundaries pose a severe problem. To solve this problem we derive novel designs for the microstructure of coated conductors.
Magneto-fluctuations of the normal resistance RN have been reproducibly observed in YBa2Cu3O7-d biepitaxial grain boundary junctions at low temperatures. We attribute them to mesoscopic transport in narrow channels across the grain boundary line, occ
We have performed a detailed study of the tunneling spectra of bicrystal grain boundary junctions (GBJs) fabricated from the HTS YBCO, BSCCO, LSCO, and NCCO. In all experiments the tunneling direction was along the CuO planes. With the exception of N
Based on the mean-field method applied either to the extended single-band Hubbard model or to the single-band Peierls-Hubbard Hamiltonian we study the stability of both site-centered and bond-centered charge domain walls. The difference in energy bet