ﻻ يوجد ملخص باللغة العربية
The magnetic field affects the motion of electrons and the orientation of spins in solids, but it is believed to have little impact on the crystal structure. This common perception has been challenged recently by ferromagnetic shape-memory alloys, where the spin-lattice coupling is so strong that crystallographic axes even in a fixed sample are forced to rotate, following the direction of moments. One would, however, least expect any structural change to be induced in antiferromagnets where spins are antiparallel and give no net moment. Here we report on such unexpected magnetic shape-memory effects that take place ironically in one of the best-studied 2D antiferromagnets, La2-xSrxCuO4 (LSCO). We find that lightly-doped LSCO crystals tend to align their b axis along the magnetic field, and if the crystal orientation is fixed, this alignment occurs through the generation and motion of crystallographic twin boundaries. Both resistivity and magnetic susceptibility exhibit curious switching and memory effects induced by the crystal-axes rotation; moreover, clear kinks moving over the crystal surfaces allow one to watch the crystal rearrangement directly with a microscope or even bare eyes.
The cuprate superconductors exhibit ubiquitous instabilities toward charge-ordered states. These unusual electronic states break the spatial symmetries of the host crystal, and have been widely appreciated as essential ingredients for constructing a
We use inelastic neutron scattering to measure the magnetic excitations in the underdoped superconductor La2-xSrxCuO4 (x=0.085, Tc=22 K) over energy and temperatures ranges 5 < E < 200 meV and 5 < T < 300 K respectively. At high temperature (T = 300
A series of high-quality under-doped La2-xSrxCuO4 superconductor crystals with x = 0.063 - 0.125 were prepared by traveling-solvent floating-zone (TSFZ) technique. We found by dc magnetic measurements that, in this series of crystals, the superconduc
Using angle-resolved photoemission spectroscopy it is revealed that in the vicinity of optimal doping the electronic structure of La2-xSrxCuO4 cuprate undergoes an electronic reconstruction associated with a wave vector q_a=(pi, 0). The reconstructed
We report the results of a combined muon spin rotation and neutron scattering study on La2-xSrxCuO4 in the vicinity of the so-called 1/8-anomaly. Application of a magnetic field drives the system towards a magnetically ordered spin-density-wave state