ﻻ يوجد ملخص باللغة العربية
Monte Carlo simulations have been performed for aqueous charged colloidal suspensions as a function of charge density on the particles and salt concentration. We vary the charge density in our simulations over a range where a reentrant solid-liquid transition in suspensions of silica and polymer latex particles has been reported by Yamanaka et al. [Phys. Rev. Lett. 80 5806 (1998)]. We show that at low ionic strengths a homogeneous liquid-like ordered suspension undergoes crystallization upon increasing charge density . Further increase in charge density resulted once again a disordered state which is in agreement with experimental observations. In addition to this reentrant order-disorder transition, we observe an inhomogeneous to homogeneous transition in our simulations when salt is added to the disordered inhomogeneous state. This inhomogeneous to homogeneous disordered transition is analogous to the solid-gas transition of atomic systems and has not yet been observed in charged colloids. The reported experimental observations on charged colloidal suspensions are discussed in the light of present simulation results.
Aqueous suspensions of highly charged polystyrene particles with different volume fractions have been investigated for structural ordering and phase behavior using static light scattering (SLS) and confocal laser scanning microscope (CLSM). Under dei
The influence of hydrodynamic interactions on lane formation of oppositely charged driven colloidal suspensions is investigated using Brownian dynamics computer simulations performed on the Rotne-Prager level of the mobility tensor. Two cases are con
Capillary bridges can form between colloids immersed in a two phase fluid, e.g., in a binary liquid mixture, if the surface of the colloids prefers the species other than the one favored in the bulk liquid. Here, we study the formation of liquid brid
The phenomenon of group motion is common in nature, ranging from the schools of fish, birds and insects, to avalanches, landslides and sand drift. If we treat objects as collectively moving particles, such phenomena can be studied from a physical poi
The ionic composition and pair correlations in fluid phases of realistically salt-free charged colloidal sphere suspensions are calculated in the primitive model. We obtain the number densities of all ionic species in suspension, including low-molecu