ﻻ يوجد ملخص باللغة العربية
We present results of magnetization measurements showing that the magnetic response of the antiferromagnetic state of SmMn_2Ge_2 depends on the path used in the field(H)-temperature(T) phase space to reach this state. Distinct signature of metastablity is observed in this antiferromagnetic state when obtained via field-cooling/field-warming paths. The isothermal M-H loops show lack of end-point memory, reminiscent of that seen in metastable vortex states near the field-induced first order phase transition in various type-II superconductors.
We investigate properties below T_c of odd-frequency pairing which is realized by antiferromagnetic critical spin fluctuations or spin wave modes. It is shown that Delta(epsilon_n) becomes maximum at finite epsilon_n, and Delta(pi T) becomes maximum
The heavy-fermion superconductor CeCoIn5 is the first material, where different experimental probes show strong evidence pointing to the realization of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. The inhomogeneous superconducting FFLO state wi
The exotic normal state of iron chalcogenide superconductor FeSe, which exhibits vanishing magnetic order and possesses an electronic nematic order, triggered extensive explorations of its magnetic ground state. To understand its novel properties, we
Low temperature ac magnetic susceptibility measurements of the coexistent antiferromagnetic superconductor YbPd2Sn have been made in hydrostatic pressures < 74 kbar in moissanite anvil cells. The superconducting transition temperature is forced to T(
We report magnetoresistance and Hall Effect results for electron-doped films of the high-temperature superconductor La$_{2-x}$Ce$_x$CuO$_4$ (LCCO) for temperatures from 0.7 to 45 K and magnetic fields up to 65 T. For x = 0.12 and 0.13, just below the