ﻻ يوجد ملخص باللغة العربية
We extend the ideas of the recently proposed perfect lens [J.B. Pendry, Phys. Rev. Lett. {bf 85}, 3966 (2000)] to an alternative structure. We show that a slab of a medium with negative refractive index bounded by media of different positive refractive index also amplifies evanescent waves and can act as a near-perfect lens. We examine the role of the surface states in the amplification of the evanescent waves. The image resolution obtained by this asymmetric lens is more robust against the effects of absorption in the lens. In particular, we study the case of a slab of silver, which has negative dielectric constant, with air on one side and other media such as glass or GaAs on the other side as an `asymmetric lossy near-perfect lens for P-polarized waves. It is found that retardation has an adverse effect on the imaging due to the positive magnetic permeability of silver, but we conclude that subwavelength image resolution is possible inspite of it.
The existing metasurfaces with ultrathin volume for asymmetric transmission were often constructed by metal with low efficiency in optical frequency, and could not realize the optical asymmetric transmission and focusing simultaneously. Although the
We report a probable gravitational lens J0316+4328, one of 19 candidate asymmetric double lenses (2 images at a high flux density ratio) from CLASS. Observations with the Very Large Array (VLA), MERLIN and the Very Long Baseline Array (VLBA) imply th
The coordinate transformation technique is applied to the design of perfect lenses and superlenses. In particular, anisotropic metamaterials that magnify two-dimensional planar images beyond the diffraction limit are designed by the use of oblate sph
We develop a general Hamiltonian treatement of spontaneous four-wave mixing in a microring resonator side-coupled to a channel waveguide. The effect of scattering losses in the ring is included, as well as parasitic nonlinear effects including self-
In this tutorial, we discuss the radiation from a Hertzian dipole into uniform isotropic lossy media of infinite extent. If the medium is lossless, the radiated power propagates to infinity, and the apparent dissipation is measured by the radiation r