ترغب بنشر مسار تعليمي؟ اضغط هنا

Stretched exponential relaxation for growing interfaces in quenched disordered media

97   0   0.0 ( 0 )
 نشر من قبل Diaz-Sanchez Anastasio
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the relaxation for growing interfaces in quenched disordered media. We use a directed percolation depinning model introduced by Tang and Leschhorn for 1+1-dimensions. We define the two-time autocorrelation function of the interface height C(t,t) and its Fourier transform. These functions depend on the difference of times t-t for long enough times, this is the steady-state regime. We find a two-step relaxation decay in this regime. The long time tail can be fitted by a stretched exponential relaxation function. The relaxation time is proportional to the characteristic distance of the clusters of pinning cells in the direction parallel to the interface and it diverges as a power law. The two-step relaxation is lost at a given wave length of the Fourier transform, which is proportional to the characteristic distance of the clusters of pinning cells in the direction perpendicular to the interface. The stretched exponential relaxation is caused by the existence of clusters of pinning cells and it is a direct consequence of the quenched noise.



قيم البحث

اقرأ أيضاً

We make a review of the two principal models that allows to explain the imbibition of fluid in porous media. These models, that belong to the directed percolation depinning (DPD) universality class, where introduced simultaneously by the Tang and Les chhorn [Phys. Rev A 45, R8309 (1992)] and Buldyrev et al. [Phys. Rev. A 45, R8313 (1992)] and reviewed by Braunstein et al. [J. Phys. A 32, 1801 (1999); Phys. Rev. E 59, 4243 (1999)]. Even these models have been classified in the same universality class than the Kardar-Parisi-Zhang equation [Phys. Rev. Lett. 56, 889, (1986)] with quenched noise (QKPZ), the contributions to the growing mechanisms are quite different. The lateral contribution in the DPD models, leads to an increasing of the roughness near the criticality while in the QKPZ equation this contribution always flattens the roughness. These results suggest that the QKPZ equation does not describe properly the DPD models even when the exponents derived from this equation are similar to the one obtained from the simulations of these models. This fact is confirmed trough the deduced analytical equation for the Tang and Leschhorn model. This equation has the same symmetries than the QKPZ one but its coefficients depend on the balance between the driving force and the quenched noise.
We present an analytical continuous equation for the Tang and Leschhorn model [Phys. Rev A {bf 45}, R8309 (1992)] derived from his microscopic rules using a regularization procedure. As well in this approach the nonlinear term $( abla h)^2$ arises na turally from the microscopic dynamics even if the continuous equation is not the Kardar-Parisi-Zhang equation [Phys. Rev. Lett. {bf 56}, 889 (1986)] with quenched noise (QKPZ). Our equation looks like a QKPZ but with multiplicative quenched and thermal noise. The numerical integration of our equation reproduce the scaling exponents of the roughness of this directed percolation depinning model.
This paper is concerned with the connection between the properties of dielectric relaxation and ac (alternating-current) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consisten t dynamical modeling. The key issues are, stretched exponential character of dielectric relaxation, power-law power spectral density, and anomalous dependence of ac conduction coefficient on frequency. We propose a self-consistent model of dielectric relaxation, in which the relaxations are described by a stretched exponential decay function. Mathematically, our study refers to the expanding area of fractional calculus and we propose a systematic derivation of the fractional relaxation and fractional diffusion equations from the property of ac universality.
169 - K. Trachenko , A. Zaccone 2020
We propose an atomistic model for correlated particle dynamics in liquids and glasses predicting both slow stretched-exponential relaxation (SER) and fast compressed-exponential relaxation (CER). The model is based on the key concept of elastically i nteracting local relaxation events. SER is related to slowing down of dynamics of local relaxation events as a result of this interaction, whereas CER is related to the avalanche-like dynamics in the low-temperature glass state. The model predicts temperature dependence of SER and CER seen experimentally and recovers the simple, Debye, exponential decay at high temperature. Finally, we reproduce SER to CER crossover across the glass transition recently observed in metallic glasses.
We study Levy walks in quenched disordered one-dimensional media, with scatterers spaced according to a long-tailed distribution. By analyzing the scaling relations for the random-walk probability and for the resistivity in the equivalent electric pr oblem, we obtain the asymptotic behavior of the mean square displacement as a function of the exponent characterizing the scatterers distribution. We demonstrate that in quenched media different average procedures can display different asymptotic behavior. In particular, we estimate the moments of the displacement averaged over processes starting from scattering sites, in analogy with recent experiments. Our results are compared with numerical simulations, with excellent agreement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا