ﻻ يوجد ملخص باللغة العربية
Various experiments evidence spatial heterogeneities in sheared yield stress fluids. To account for heterogeneities in the velocity gradient direction, we use a simple model corresponding to a non-monotonous local constitutive curve and study a simple shear geometry. Different types of boundary conditions are considered. Under controlled macroscopic shear stress $Sigma$, we find homogeneous flow in the bulk and a hysteretic macroscopic stress - shear rate curve. Under controlled macroscopic shear rate $dot{Gamma}$, shear banding is predicted within a range of values of $dot{Gamma}$. For small shear rates, stick slip can also be observed. These qualitative behaviours are robust when changing the boundary conditions.
Soft glassy materials such as mayonnaise, wet clays, or dense microgels display under external shear a solid-to-liquid transition. Such a shear-induced transition is often associated with a non-monotonic stress response, in the form of a stress maxim
We perform $3$D numerical simulations to investigate the sedimentation of a single sphere in the absence and presence of a simple cross shear flow in a yield stress fluid with weak inertia. In our simulations, the settling flow is considered to be th
Stability of coarse particles against gravity is an important issue in dense suspensions (fresh concrete, foodstuff, etc.). On the one hand, it is known that they are stable at rest when the interstitial paste has a high enough yield stress; on the o
Materials such as foams, concentrated emulsions, dense suspensions or colloidal gels, are yield stress fluids. Their steady flow behavior, characterized by standard rheometric techniques, is usually modeled by a Herschel-Bulkley law. The emergence of
We develop an elasto-plastic description for the transient dynamics prior to steady flow of athermally yielding materials. Our mean-field model not only reproduces the experimentally observed non-linear time dependence of the shear-rate response to a