ﻻ يوجد ملخص باللغة العربية
The Heisenberg chain with a weak link is studied, as a simple example of a quantum ring with a constriction or defect. The Heisenberg chain is equivalent to a spinless electron gas under a Jordan-Wigner transformation. Using density matrix renormalization group and quantum Monte Carlo methods we calculate the spin/charge stiffness of the model, which determines the strength of the `persistent currents. The stiffness is found to scale to zero in the weak link case, in agreement with renormalization group arguments of Eggert and Affleck, and Kane and Fisher.
In this work, we address the ground state properties of the anisotropic spin-1/2 Heisenberg XYZ chain under the interplay of magnetic fields and the Dzyaloshinskii-Moriya (DM) interaction which we interpret as an electric field. The identification of
We study the persistent current circulating along a mesoscopic ring with a dot side-coupled to it when threaded by a magnetic field. A cluster including the dot and its vicinity is diagonalized and embedded into the rest of the system. The result is
The effect of a single static impurity on the many-body states and on the spin and thermal transport in the one-dimensional anisotropic Heisenberg chain at finite temperatures is studied. Whereas the pure Heisenberg model reveals Poisson level statis
We study the thermodynamics of an XYZ Heisenberg chain with Dzyaloshinskii-Moriya interaction, which describes the low-energy behaviors of a one-dimensional spin-orbit-coupled bosonic model in the deep insulating region. The entropy and the specific
We present a model compound for the $S$=1/2 ferromagnetic Heisenberg chain composed of the verdazyl-based complex $[$Zn(hfac)$_2]$$[$4-Cl-$o$-Py-V-(4-F)$_2]$. $Ab$ $initio$ MO calculations indicate a predominant ferromagnetic interaction forming an $