ﻻ يوجد ملخص باللغة العربية
We study orbital magnetism in a three-dimensional (3D) quantum dot with a parabolic confining potential. We calculate the free energy of the system as a function of the magnetic field and the temperature. By this, we show that the temperature-field plane can be classified into three regions in terms of the characteristic behavior of the magnetization: the Landau diamagnetism, de Haas-van Alphen oscillation and mesoscopic fluctuation of magnetization. We also calculate numerically the magnetization of the system and then the current density distribution. As for the oscillation of the magnetization when the field is varied, the 3D quantum dot shows a longer period than a 2D quantum dot which contains the same number of electrons. A large paramagnetism appears at low temperatures when the magnetic field is very weak.
Three-dimensional anisotropy of the Lande g-factor and its electrical modulation are studied for single uncapped InAs self-assembled quantum dots (QDs). The g-factor is evaluated from measurement of inelastic cotunneling via Zeeman substates in the Q
We demonstrate several new electron transport phenomena mediated by Andreev bound states (ABSs) that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal metal (N) contacts. Thre
We report results on the control of barrier transparency in InAs/InP nanowire quantum dots via the electrostatic control of the device electron states. Recent works demonstrated that barrier transparency in this class of devices displays a general tr
The quantum anomalous Hall (QAH) effect - a macroscopic manifestation of chiral band topology at zero magnetic field - has only been experimentally realized by magnetic doping of topological insulators (1 - 3) and delicate design of Moire heterostruc
The spatial distribution of electric current under magnetic field and the resultant orbital magnetism have been studied for two-dimensional electrons under a harmonic confining potential $V(vecvar{r})=m omega_0^2 r^2/2$ in various regimes of temperat