ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron transport in a mesoscopic superconducting / ferromagnetic hybrid conductor

127   0   0.0 ( 0 )
 نشر من قبل H. Courtois
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present electrical transport experiments performed on submicron hybrid devices made of a ferromagnetic conductor (Co) and a superconducting (Al) electrode. The sample was patterned in order to separate the contributions of the Co conductor and of the Co-Al interface. We observed a strong influence of the Al electrode superconductivity on the resistance of the Co conductor. This effect is large only when the interface is highly transparent. We characterized the dependence of the observed resistance decrease on temperature, bias current and magnetic field. As the differential resistance of the ferromagnet exhibits a non-trivial asymmetry, we claim that the magnetic domain structure plays an important role in the electron transport properties of superconducting / ferromagnetic conductors.



قيم البحث

اقرأ أيضاً

We present an exhaustive theoretical analysis of a double-loop Josephson proximity interferometer, as the one recently realized by Strambini et al. for the control of the Andreev spectrum via an external magnetic field. This system, called $omega$-SQ UIPT, consists of a T-shaped diffusive normal metal (N) attached to three superconductors (S) forming a double loop configuration. By using the quasiclassical Green function formalism, we calculate the local normalized density of states, the Josephson currents through the device and the dependence of the former on the length of the junction arms, the applied magnetic field and the S/N interface transparencies. We show that by tuning the fluxes through the double loop, the system undergoes transitions from a gapped to a gapless state. We also evaluate the Josephson currents flowing in the different arms as a function of magnetic fluxes and explore the quasi-particle transport, by considering a metallic probe tunnel-coupled to the Josephson junction and calculating its I-V characteristics. Finally, we study the performances of the $omega$-SQUIPT and its potential applications, by investigating its electrical and magnetometric properties.
We present an exhaustive theoretical analysis of charge and thermoelectric transport in a normal metal-ferromagnetic insulator-superconductor (NFIS) junction, and explore the possibility of its use as a sensitive thermometer. We investigated the tran sfer functions and the intrinsic noise performance for different measurement configurations. A common feature of all configurations is that the best temperature noise performance is obtained in the non-linear temperature regime for a structure based on an europium chalcogenide ferromagnetic insulator in contact with a superconducting Al film structure. For an open-circuit configuration, although the maximal intrinsic temperature sensitivity can achieve $10$nKHz$^{-1/2}$, a realistic amplifying chain will reduce the sensitivity up to $10$$mu$KHz$^{-1/2}$. To overcome this limitation we propose a measurement scheme in a closed-circuit configuration based on state-of-art SQUID detection technology in an inductive setup. In such a case we show that temperature noise can be as low as $35$nKHz$^{-1/2}$. We also discuss a temperature-to-frequency converter where the obtained thermo-voltage developed over a Josephson junction operated in the dissipative regime is converted into a high-frequency signal. We predict that the structure can generate frequencies up to $sim 120$GHz, and transfer functions up to $200$GHz/K at around $sim 1$K. If operated as electron thermometer, the device may provide temperature noise lower than $35$nKHz$^{-1/2}$ thereby being potentially attractive for radiation sensing applications.
We identify the different contributions to quantum interference in a mesoscopic metallic loop in contact with two superconducting electrodes. At low temperature, a flux-modulated Josephson coupling is observed with strong damping over the thermal len gth L_{T}. At higher temperature, the magnetoresistance exhibits large h/2e-periodic oscillations with 1/T power law decay. This flux-sensitive contribution arises from coherence of low-energy quasiparticles states over the phase-breaking length L_{phi}. Mesoscopic fluctuations contribute as a small h/e oscillation, resolved only in the purely normal state.
79 - M. Blaauboer 2002
We derive a general scattering-matrix formula for the pumped current through a mesoscopic region attached to a normal and a superconducting lead. As applications of this result we calculate the current pumped through (i) a pump in a wire, (ii) a quan tum dot in the Coulomb blockade regime, and (iii) a ballistic double-barrier junction, all coupled to a superconducting lead. Andreev reflection is shown to enhance the pumped current by up to a factor of 4 in case of equal coupling to the leads. We find that this enhancement can still be further increased for slightly asymmetric coupling.
We present a method for measuring the internal state of a superconducting qubit inside an on-chip microwave resonator. We show that one qubit state can be associated with the generation of an increasingly large cavity coherent field, while the other remains associated with the vacuum. By measuring the outgoing resonator field with conventional devices, an efficient single-shot QND-like qubit readout can be achieved, enabling a high-fidelity measurement in the spirit of the electron-shelving technique for trapped ions. We expect that the proposed ideas can be adapted to different superconducting qubit designs and contribute to the further improvement of qubit readout fidelity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا