ﻻ يوجد ملخص باللغة العربية
A two-lane extension of a recently proposed cellular automaton model for traffic flow is discussed. The analysis focuses on the reproduction of the lane usage inversion and the density dependence of the number of lane changes. It is shown that the single-lane dynamics can be extended to the two-lane case without changing the basic properties of the model which are known to be in good agreement with empirical single-vehicle data. Therefore it is possible to reproduce various empirically observed two-lane phenomena, like the synchronization of the lanes, without fine-tuning of the model parameters.
Tolls are collected on many highways as a means of traffic control and revenue generation. However, the presence of tollbooths on highway surely slows down traffic flow. Here, we investigate how the presence of tollbooths affect the average car speed
Simple cellular automata models are able to reproduce the basic properties of highway traffic. The comparison with empirical data for microscopic quantities requires a more detailed description of the elementary dynamics. Based on existing cellular a
First we consider a unidirectional flux omega_bar of vehicles each of which is characterized by its `natural velocity v drawn from a distribution P(v). The traffic flow is modeled as a collection of straight `world lines in the time-space plane, with
A one-way {em street} of width M is modeled as a set of M parallel one-dimensional TASEPs. The intersection of two perpendicular streets is a square lattice of size M times M. We consider hard core particles entering each street with an injection pro
We introduce a stochastic lattice gas model including two particle species and two parallel lanes. One lane with exclusion interaction and directed motion and the other lane without exclusion and unbiased diffusion, mimicking a micotubule filament an