ﻻ يوجد ملخص باللغة العربية
Precise calorimetric measurements have been carried out in the 7 - 300 K temperature range on two ceramic samples of thulium 123 cuprates TmBa2Cu3O6.92 and TmBa2Cu3O6.70. The temperature dependence of the heat capacity was analyzed in the region where the pseudogap state (PGS) takes place. The lattice contribution was subtracted from the experimental data. The PGS component has been obtained by comparing electronic heat capacities of two investigated samples because the PGS contribution for the 6.92 sample is negligible. The anomalous behavior of the electronic heat capacity near the temperature boundary of PGS was found. It is supposed that this anomaly is due to peculiarities in N(E) function where N is the density of electronic states and E is the energy of carriers of charge.
We present Raman experiments on underdoped and overdoped Bi2Sr2CaCu2O(8+d) (Bi-2212) single crystals. We reveal the pseudogap in the electronic Raman spectra in the B1g and B2g geometries. In these geometries we probe respectively, the antinodal (AN)
Reconstruction of the Fermi surface of high-temperature superconducting cuprates in the pseudogap state is analyzed within nearly exactly solvable model of the pseudogap state, induced by short-range order fluctuations of antiferromagnetic (AFM, spin
The phenomenological Greens function developed in the works of Yang, Rice and Zhang has been very successful in understanding many of the anomalous superconducting properties of the deeply underdoped cuprates. It is based on considerations of the res
Overshadowing the superconducting dome in hole-doped cuprates, the pseudogap state is still one of the mysteries that no consensus can be achieved. It has been shown that the rotational symmetry is broken in this state and may result in a nematic pha
Understanding the thermodynamic properties of high-$T_c$ cuprate superconductors is a key step to establish a satisfactory theory of these materials. The electronic specific heat is highly unconventional, distinctly non-BCS, with remarkable doping-de