ﻻ يوجد ملخص باللغة العربية
We explore the effects of noncommuting applied fields on the ground-state ordering of the quasi-one-dimensional spin-1/2 XY-like antiferromagnet Cs2CoCl4 using single-crystal neutron diffraction. In zero field interchain couplings cause long-range order below T_N=217(5) mK with chains ordered antiferromagnetically along their length and moments confined to the (b,c) plane. Magnetic fields applied at an angle to the XY planes are found to initially stabilize the order by promoting a spin-flop phase with an increased perpendicular antiferromagnetic moment. In higher fields the antiferromagnetic order becomes unstable and a transition occurs to a phase with no long-range order in the (b,c) plane, proposed to be a spin liquid phase that arises when the quantum fluctuations induced by the noncommuting field become strong enough to overcome ordering tendencies. Magnetization measurements confirm that saturation occurs at much higher fields and that the proposed spin-liquid state exists in the region 2.10 < H_SL < 2.52 T || a. The observed phase diagram is discussed in terms of known results on XY-like chains in coexisting longitudinal and transverse fields.
The recent determination of a robust spin Hamiltonian for the anti-ferromagnetic XY pyrochlore Er2Ti2O7 reveals a most convincing case of the order by quantum disorder (ObQD) mechanism for ground state selection. This mechanism relies on quantum fluc
A single crystal of the Co2+ based pyrochlore NaCaCo2F7 was studied by inelastic neutron scattering. This frustrated magnet with quenched exchange disorder remains in a strongly correlated paramagnetic state down to one 60th of the Curie-Weiss temper
We show that the topological Kitaev spin liquid on the honeycomb lattice is extremely fragile against the second-neighbor Kitaev coupling $K_2$, which has recently been shown to be the dominant perturbation away from the nearest-neighbor model in iri
Exchange bias-like effect observed in the intermetallic compound TbFeAl, which displays a magnetic phase transition at $T^h_c approx$ 198~K and a second one at $T^l_c approx$ 154~K, is reported. {em Jump}-like features are observed in the isothermal
It is shown that the mechanism of order out of disorder is at work in the antisymmetric pyrochlore antiferromagnet. Quantum as well as thermal fluctuations break the continuous degeneracy of the classical ground state manifold and reduce its symmetry