ﻻ يوجد ملخص باللغة العربية
A density matrix renormalisation group scheme is developed, allowing for the first time essentially exact numerical solutions for the important excited states of a realistic semi-empirical model for oligo-phenylenes. By monitoring the evolution of the energies with chain length and comparing them to the experimental absorption peaks of oligomers and thin films, we assign the four characteristic absorption peaks of phenyl-based polymers. We also determine the position and nature of the nonlinear optical states in this model.
Ground state properties and excited states of ladder-type paraphenylene oligomers are calculated applying semiempirical methods for up to eleven phenylene rings. The results are in qualitative agreement with experimental data. A new scheme to interpr
The two-state molecular orbital model of the one-dimensional phenyl-based semiconductors is applied to poly(p-phenylene vinylene). The energies of the low-lying excited states are calculated using the density matrix renormalization group method. Calc
Using an electrochemically gated transistor, we achieved controlled and reversible doping of poly(p-phenylene vinylene) in a large concentration range. Our data open a wide energy-window view on the density of states (DOS) and show, for the first tim
Within a rigid-band correlated electron model for oligomers of poly-(paraphenylene) (PPP) and poly-(paraphenylenevinylene) (PPV), we show that there exist two fundamentally different classes of two-photon A$_g$ states in these systems to which photoi
The two state molecular orbital (2-MO) model of the phenyl based semiconductors is used to calculate the low-lying spectra of the Ag and Bu states of poly(para-phenylene) (PPP). The model parameters are determined by fitting its predictions to exact