ﻻ يوجد ملخص باللغة العربية
We discuss, in this paper, the dynamical properties of extremely diluted, non-monotonic neural networks. Assuming parallel updating and the Hebb prescription for the synaptic connections, a flow equation for the macroscopic overlap is derived. A rich dynamical phase diagram was obtained, showing a stable retrieval phase, as well as a cycle two and chaotic behavior. Numerical simulations were performed, showing good agreement with analytical results. Furthermore, the simulations give an additional insight into the microscopic dynamical behavior during the chaotic phase. It is shown that the freezing of individual neuron states is related to the structure of chaotic attractors.
The retrieval behavior and thermodynamic properties of symmetrically diluted Q-Ising neural networks are derived and studied in replica-symmetric mean-field theory generalizing earlier works on either the fully connected or the symmetrical extremely
The dynamical behaviour of a weakly diluted fully-inhibitory network of pulse-coupled spiking neurons is investigated. Upon increasing the coupling strength, a transition from regular to stochastic-like regime is observed. In the weak-coupling phase,
We introduce a model of generalized Hebbian learning and retrieval in oscillatory neural networks modeling cortical areas such as hippocampus and olfactory cortex. Recent experiments have shown that synaptic plasticity depends on spike timing, especi
The optimal capacity of graded-response perceptrons storing biased and spatially correlated patterns with non-monotonic input-output relations is studied. It is shown that only the structure of the output patterns is important for the overall performance of the perceptrons.
Water ice and spin ice are important model systems in which theory can directly account for zero point entropy associated with quenched configurational disorder. Spin ice differs from water ice in the important respect that its fundamental constituen