ﻻ يوجد ملخص باللغة العربية
We address the problem of heat conduction in 1-D nonlinear chains; we show that, acting on the parameter which controls the strength of the on site potential inside a segment of the chain, we induce a transition from conducting to insulating behavior in the whole system. Quite remarkably, the same transition can be observed by increasing the temperatures of the thermal baths at both ends of the chain by the same amount. The control of heat conduction by nonlinearity opens the possibility to propose new devices such as a thermal rectifier.
Heat transport in one-dimensional (1D) momentum-conserving lattices is generally assumed to be anomalous, thus yielding a power-law divergence of thermal conductivity with system length. However, whether heat transport in two-dimensional (2D) system
We propose a variational approach to study renormalized phonons in momentum conserving nonlinear lattices with either symmetric or asymmetric potentials. To investigate the influence of pressure to phonon properties, we derive an inequality which pro
We construct a contour function for the entanglement entropies in generic harmonic lattices. In one spatial dimension, numerical analysis are performed by considering harmonic chains with either periodic or Dirichlet boundary conditions. In the massl
We have experimentally demonstrated thermal rectification as bulk effect. According to a theoretical design of a thermal rectifier, we have prepared an oxide thermal rectifier made of two cobalt oxides with different thermal conductivities, and have
We report the observation of thermal rectification in a semiconductor quantum dot, as inferred from the asymmetric line shape of the thermopower oscillations. The asymmetry is observed at high in-plane magnetic fields and caused by the presence of a high orbital momentum state in the dot.