ﻻ يوجد ملخص باللغة العربية
A metastable lattice gas with nearest-neighbor interactions and continuous-time dynamics is studied using a generalized Becker-Doring approach in the multidimensional space of cluster configurations. The pre-exponential of the metastable state lifetime (inverse of nucleation rate) is found to exhibit distinct peaks at integer values of the inverse supersaturation. Peaks are unobservable (infinitely narrow) in the strict limit T->0, but become detectable and eventually dominate at higher temperatures.
We study low-temperature nucleation in kinetic Ising models by analytical and simulational methods, confirming the general result for the average metastable lifetime, <tau> = A*exp(beta*Gamma) (beta = 1/kT) [E. Jordao Neves and R.H. Schonmann, Commun
Using Monte Carlo simulations, we study the character of the spin-glass (SG) state of a site-diluted dipolar Ising model. We consider systems of dipoles randomly placed on a fraction x of all L^3 sites of a simple cubic lattice that point up or down
Consider a dynamical many-body system with a random initial state subsequently evolving through stochastic dynamics. What is the relative importance of the initial state (nature) vs. the realization of the stochastic dynamics (nurture) in predicting
We determine the complete asymptotic behaviour of the work distribution in driven stochastic systems described by Langevin equations. Special emphasis is put on the calculation of the pre-exponential factor which makes the result free of adjustable p
Recently, a surprising low-temperature behavior has been revealed in a two-leg ladder Ising model with trimer rungs (Weiguo Yin, arXiv:2006.08921). Motivated by these findings, we study this model from another perspective and demonstrate that the rep