ﻻ يوجد ملخص باللغة العربية
We study a model for a thin liquid film dewetting from a periodic heterogeneous substrate (template). The amplitude and periodicity of a striped template heterogeneity necessary to obtain a stable periodic stripe pattern, i.e. pinning, are computed. This requires a stabilization of the longitudinal and transversal modes driving the typical coarsening dynamics during dewetting of a thin film on a homogeneous substrate. If the heterogeneity has a larger spatial period than the critical dewetting mode, weak heterogeneities are sufficient for pinning. A large region of coexistence between coarsening dynamics and pinning is found.
A thin liquid film with non-zero curvature at its free surface spontaneously flows to reach a flat configuration, a process driven by Laplace pressure gradients and resisted by the liquids viscosity. Inspired by recent progresses on the dynamics of l
Experiments on dewetting thin polymer films confirm the theoretical prediction that thermal noise can strongly influence characteristic time-scales of fluid flow and cause coarsening of typical length scales. Comparing the experiments with determinis
This study reveals the influence of the surface energy and solid/liquid boundary condition on the breakup mechanism of dewetting ultra-thin polymer films. Using silane self-assembled monolayers, SiO$_2$ substrates are rendered hydrophobic and provide
We report on the isotropic pinning obtained in epitaxial Fe(Se,Te) thin films grown on CaF2 (001) substrate. High critical current density values larger than 1 MA/cm2 in self field in liquid helium are reached together with a very weak dependence on
We study the dewetting of liquid films capped by a thin elastomeric layer. When the tension in the elastomer is isotropic, circular holes grow at a rate which decreases with increasing tension. The morphology of holes and rim stability can be control