ﻻ يوجد ملخص باللغة العربية
We calculate the conductance variation of several metallic carbon nanotubes as their end is being dipped into a liquid metal electrode, where experiments have shown an achievable conductance close to 1 quantum of conductance. The calculated conductance for a (40,40) nanotube indicates that the current flows almost entirely through the pi mode, and not the pi* mode. The calculation also predicts that for narrower nanotubes (~1 nm in diameter), in a weak coupling regime, the saturation of both pi and pi* modes should be observable. An experiment is proposed to verify this point.
The electronic transport properties of a metallic carbon nanotube with the five-seven disclination pair characterized by a lattice distortion vector are investigated. The influence of the disclination dipole includes induced curvature and mixing of t
We have calculated the effects of structural distortions of armchair carbon nanotubes on their electrical transport properties. We found that the bending of the nanotubes decreases their transmission function in certain energy ranges and leads to an
We have studied the discrete electronic spectrum of closed metallic nanotube quantum dots. At low temperatures, the stability diagrams show a very regular four-fold pattern that allows for the determination of the electron addition and excitation ene
We use DFT to study the effect of molecular adsorbates on the conductance of metallic carbon nanotubes. The five molecules considered (NO2, NH2, H, COOH, OH) lead to similar scattering of the electrons. The adsorption of a single molecule suppresses
Through magnetic linear dichroism spectroscopy, the magnetic susceptibility anisotropy of metallic single-walled carbon nanotubes has been extracted and found to be 2-4 times greater than values for semiconducting single-walled carbon nanotubes. This