ترغب بنشر مسار تعليمي؟ اضغط هنا

Coulomb Ordering in Anderson-Localized Electron Systems

210   0   0.0 ( 0 )
 نشر من قبل Alexander A. Slutskin
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We have established that with the electron density going to zero the Coulomb interaction brings the arrangement of the Anderson localized electrons closer and closer to an ideal (Wigner) crystal lattice, provided the temperature is sufficiently low and the dimension of the system is > 1. The ordering occurs despite the fact that a random spread of the energy levels of the localized one-electron states, exceeding the mean Coulomb energy per electron, renders it impossible the electrons to be self-localized due to their mutual Coulomb repulsion This differs principally the Coulomb ordered Anderson localized electron system (COALES) from Wigner crystal, Wigner glass, and any other ordered electron or hole system that results from the Coulomb self-localization of electrons/holes. The residual disorder inherent to COALES is found to bring about a multi-valley ground-state degeneration akin to that in spin glass. With the electron density increasing, COALES is revealed to turn into Wigner glass or a glassy state of a Fermi-glass type depending on the width of the random spread of the electron levels.



قيم البحث

اقرأ أيضاً

270 - F. L. Metz , L. Leuzzi , G. Parisi 2013
We present strong numerical evidence for the existence of a localization-delocalization transition in the eigenstates of the 1-D Anderson model with long-range hierarchical hopping. Hierarchical models are important because of the well-known mapping between their phases and those of models with short range hopping in higher dimensions, and also because the renormalization group can be applied exactly without the approximations that generally are required in other models. In the hierarchical Anderson model we find a finite critical disorder strength Wc where the average inverse participation ratio goes to zero; at small disorder W < Wc the model lies in a delocalized phase. This result is based on numerical calculation of the inverse participation ratio in the infinite volume limit using an exact renormalization group approach facilitated by the models hierarchical structure. Our results are consistent with the presence of an Anderson transition in short-range models with D > 2 dimensions, which was predicted using renormalization group arguments. Our finding should stimulate interest in the hierarchical Anderson model as a simplified and tractable model of the Anderson localization transition which occurs in finite-dimensional systems with short-range hopping.
104 - H. Obuse , K. Yakubo 2004
We study spatial structures of anomalously localized states (ALS) in tail regions at the critical point of the Anderson transition in the two-dimensional symplectic class. In order to examine tail structures of ALS, we apply the multifractal analysis only for the tail region of ALS and compare with the whole structure. It is found that the amplitude distribution in the tail region of ALS is multifractal and values of exponents characterizing multifractality are the same with those for typical multifractal wavefunctions in this universality class.
103 - H. Obuse , K. Yakubo 2004
We study the level-spacing distribution function $P(s)$ at the Anderson transition by paying attention to anomalously localized states (ALS) which contribute to statistical properties at the critical point. It is found that the distribution $P(s)$ fo r level pairs of ALS coincides with that for pairs of typical multifractal states. This implies that ALS do not affect the shape of the critical level-spacing distribution function. We also show that the insensitivity of $P(s)$ to ALS is a consequence of multifractality in tail structures of ALS.
Using numerically exact methods we study transport in an interacting spin chain which for sufficiently strong spatially constant electric field is expected to experience Stark many-body localization. We show that starting from a generic initial state , a spin-excitation remains localized only up to a finite delocalization time, which depends exponentially on the size of the system and the strength of the electric field. This suggests that bona fide Stark many-body localization occurs only in the thermodynamic limit. We also demonstrate that the transient localization in a finite system and for electric fields stronger than the interaction strength can be well approximated by a Magnus expansion up-to times which grow with the electric field strength.
We theoretically study the response of a many-body localized system to a local quench from a quantum information perspective. We find that the local quench triggers entanglement growth throughout the whole system, giving rise to a logarithmic lightco ne. This saturates the modified Lieb-Robinson bound for quantum information propagation in many-body localized systems previously conjectured based on the existence of local integrals of motion. In addition, near the localization-delocalization transition, we find that the final states after the local quench exhibit volume-law entanglement. We also show that the local quench induces a deterministic orthogonality catastrophe for highly excited eigenstates, where the typical wave-function overlap between the pre- and post-quench eigenstates decays {it exponentially} with the system size.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا