ﻻ يوجد ملخص باللغة العربية
We report magnetic field dependent magnetization and microwave impedance measurements on a MgB2 superconductor prepared by high pressure synthesis. We find that the upper critical field is linearly dependent on temperature near Tc and the dc irreversibility field exponent is ~1.4. The microwave data display an excess surface resistance below Tc which is neither observed in low Tc nor in high temperature superconductors (HTSC). The real part of the complex conductivity, sigma1, shows a huge maximum below Tc and the imaginary part, sigma2, is linear for temperatures less than 20 K, which can not be simply accounted for by the weak coupling BCS model with an s-wave superconducting order parameter. We speculate that this may be due to the two gaps reported by other studies. Unlike measurements on the high temperature superconducting cuprates, we find no evidence of weak-links in the superconducting state. By inverting the magnetic field dependent impedance data, we find a vortex depinning frequency that decreases with increasing magnetic field and evidence for an anisotropic upper critical magnetic field.
We have performed susceptibility, thermopower, dc resistance and microwave measurements on RuSr2EuCu2O8. This compound has recently been shown to display the coexistence of both superconducting and magnetic order. We find clear evidence of changes in
We have observed the conduction electron spin resonance (CESR) in fine powders of MgB2 both in the superconducting and normal states. The Pauli susceptibility is chi_s=2.0*10^{-5} emu/mole in the temperature range of 450 to 600 K. The spin relaxation
We study the effect of nano(n)-SiC addition on the crystal structure, critical temperature (Tc), critical current density (Jc) and flux pinning in MgB2 superconductor. X-ray diffraction patterns show that all the samples have MgB2 as the main phase w
The present article reports a method for the average grain size evaluation of superconducting nano-particles through their magnetic properties. The use of SQUID magnetometry to determine the average MgB2 particle size was investigated and the results
We present a magnetization study of low density YBCO ceramics carried out in magnetic fields 0.5 Oe < H < 50 kOe. It was demonstrated that superconducting links between grains may be completely suppressed either by a magnetic field of the order of 10