ﻻ يوجد ملخص باللغة العربية
Magnetoresistance (MR) in the a-axis resistivity of untwinned YBa_{2}Cu_{3}O_{y} single crystals is measured for a wide range of doping (y = 6.45 - 7.0). The y-dependence of the in-plane coherence length xi_{ab} estimated from the fluctuation magnetoconductance indicates that the superconductivity is anomalously weakened in the 60-K phase; this gives evidence, together with the Hall coefficient and the a-axis thermopower data that suggest the hole doping to be 12% for y = 6.65, that the origin of the 60-K plateau is the 1/8 anomaly. At high temperatures, the normal-state MR data show signatures of the Zeeman effect on the pseudogap in underdoped samples.
We present the result of our accurate measurements of the a- and b-axis resistivity (rho_a and rho_b), magnetoconductivity (Deltasigma / sigma), Hall coefficient R_H, and the a-axis thermopower S_a in untwinned YBa_{2}Cu_{3}O_{y} single crystals in a
We use a mapping of the multiband Hubbard model for $CuO_{3}$ chains in $RBa_{2}Cu_{3}0_{6+x}$ (R=Y or a rare earth) onto a $t-J$ model and the description of the charge dynamics of the latter in terms pf s spinless model, to study the electronic str
We performed a Laser angle-resolved photoemission spectroscopy (ARPES) study on a wide doping range of Ba1-xKxFe2As2 (BaK) and precisely determined the doping evolution of the superconducting (SC) gaps in this compound. The gap size of the outer hole
SQUID magnetization measurements in oriented powders of Y$_{1-x}$Ca$_{x}$Ba$% _{2}$Cu$_{3}$O$_{y}$, with $x$ ranging from 0 to 0.2, for $yapprox 6.1$ and $yapprox 6.97$, have been performed in order to study the doping dependence of the fluctuating d
Using high energy resolution angle resolved photoemission spectroscopy, we have resolved the bilayer splitting effect in a wide range of dopings of the bilayer cuprate $Bi_{2}Sr_{2}CaCu_{2}O_{8+delta}$. This bilayer splitting is due to a nonvanishing