ترغب بنشر مسار تعليمي؟ اضغط هنا

Superfluid to solid crossover in a rotating Bose-Einstein condensed gas

126   0   0.0 ( 0 )
 نشر من قبل David Feder
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The properties of a rotating Bose-Einstein condensate confined in a prolate cylindrically symmetric trap are explored both analytically and numerically. As the rotation frequency increases, an ever greater number of vortices are energetically favored. Though the cloud anisotropy and moment of inertia approach those of a classical fluid at high frequencies, the observed vortex density is consistently lower than the solid-body estimate. Furthermore, the vortices are found to arrange themselves in highly regular triangular arrays, with little distortion even near the condensate surface. These results are shown to be a direct consequence of the inhomogeneous confining potential.

قيم البحث

اقرأ أيضاً

In terms of linearized Gross-Pitaevskii equation we have studied the process of sound emission arises from a supersonic particle motion in a Bose-condensed gas. By analogy with the method used for description of Vavilov-Cherenkov phenomenon, we have found a friction work created by the particle generated condensate polarization. For comparison we have found radiation intensity of excitations. Both methods gives the same result.
In this paper we extend previous hydrodynamic equations, governing the motion of Bose-Einstein-condensed fluids, to include temperature effects. This allows us to analyze some differences between a normal fluid and a Bose-Einstein-condensed one. We s how that, in close analogy with superfluid He-4, a Bose-Einstein-condensed fluid exhibits the mechanocaloric and thermomechanical effects. In our approach we can explain both effects without using the hypothesis that the Bose-Einstein-condensed fluid has zero entropy. Such ideas could be investigated in existing experiments.
We solve the Gross-Pitaevskii equation to study energy transfer from an oscillating `object to a trapped Bose-Einstein condensate. Two regimes are found: for object velocities below a critical value, energy is transferred by excitation of phonons at the motion extrema; while above the critical velocity, energy transfer is via vortex formation. The second regime corresponds to significantly enhanced heating, in agreement with a recent experiment.
A scissors mode of a rotating Bose-Einstein condensate is investigated both theoretically and experimentally. The condensate is confined in an axi-symmetric harmonic trap, superimposed with a small rotating deformation. For angular velocities larger than $omega_perp/sqrt2 $, where $omega_perp$ is the radial trap frequency, the frequency of the scissors mode is predicted to vanish like the square root of the deformation, due to the tendency of the system to exhibit spontaneous rotational symmetry breaking. Measurements of the frequency confirm the predictions of theory. Accompanying characteristic oscillations of the internal shape of the condensate are also calculated and observed experimentally.
We report the first experimental observation of Beliaev damping of a collective excitation in a Bose-condensed gas. Beliaev damping is not predicted by the Gross-Pitaevskii equation and so this is one of the few experiments that tests BEC theory beyo nd the mean field approximation. Measurements of the amplitude of a high frequency scissors mode, show that the Beliaev process transfers energy to a lower lying mode and then back and forth between these modes. These characteristics are quite distinct from those of Landau damping, which leads to a monotonic decrease in amplitude. To enhance the Beliaev process we adjusted the geometry of the magnetic trapping potential to give a frequency ratio of 2 to 1 between two of the scissors modes of the condensate. The ratios of the trap oscillation frequencies $omega_y / omega_x$ and $omega_z / omega_x$ were changed independently, so that we could investigate the resonant coupling over a range of conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا