ﻻ يوجد ملخص باللغة العربية
Experimental results for the susceptibility, specific heat, 4f occupation number, Hall effect and magnetoresistance for single crystals of YbAl$_{3}$ show that, in addition to the Kondo energy scale $k_{B}T_{K}$ $% sim $ 670K, there is a low temperature scale $T_{coh}<50$K for the onset of coherence. Furthermore the crossover from the low temperature Fermi liquid regime to the high temperature local moment regime is slower than predicted by the Anderson impurity model. These effects may reflect the behavior of the Anderson Lattice in the limit of low conduction electron density.
In some metals containing a sub-lattice of rare earth or actinide ions, free local $f$ spins at high temperatures dissolve into the sea of quantum conduction electrons at low temperatures, where they become mobile excitations. Once mobile, the spins
Recent excperiments (ARPES, Raman) suggest the presence of two distinct energy gaps in high-Tc superconductors (HTSC), exhibiting different doping dependences. Results of a variational cluster approach to the superconducting state of the two-dimensio
The intermediate valence compound YbAl3 exhibits a broad magnetic excitation with characteristic energy E1 ~ 50meV, of order of the Kondo energy (TK ~ 600-700K). In the low temperature (T < Tcoh ~ 40K) Fermi liquid state, however, a new magnetic exci
The intermediate valence compound YbAl$_3$ is known to undergo a hybridization process between itinerant and localized electrons. The resulting heavy Fermi liquid remains non-magnetic and non-superconducting. A microscopic understanding of the hybrid
The theory of deconfined quantum critical points describes phase transitions at temperature T = 0 outside the standard paradigm, predicting continuous transformations between certain ordered states where conventional theory requires discontinuities.