ﻻ يوجد ملخص باللغة العربية
The mutual information of a single-layer perceptron with $N$ Gaussian inputs and $P$ deterministic binary outputs is studied by numerical simulations. The relevant parameters of the problem are the ratio between the number of output and input units, $alpha = P/N$, and those describing the two-point correlations between inputs. The main motivation of this work refers to the comparison between the replica computation of the mutual information and an analytical solution valid up to $alpha sim O(1)$. The most relevant results are: (1) the simulation supports the validity of the analytical prediction, and (2) it also verifies a previously proposed conjecture that the replica solution interpolates well between large and small values of $alpha$.
We analyze the Optimal Channel Network model for river networks using both analytical and numerical approaches. This is a lattice model in which a functional describing the dissipated energy is introduced and minimized in order to find the optimal co
It is shown that the limit $t-ttoinfty$ of the equilibrium dynamic self-energy can be computed from the $nto 1$ limit of the static self-energy of a $n$-times replicated system with one step replica symmetry breaking structure. It is also shown that
We estimated the residual entropy of ice Ih by the recently developed simulation protocol, namely, the combination of Replica-Exchange Wang-Landau algorithm and Multicanonical Replica-Exchange Method. We employed a model with the nearest neighbor int
By combining two generalized-ensemble algorithms, Replica-Exchange Wang-Landau (REWL) method and Multicanonical Replica-Exchange Method (MUCAREM), we propose an effective simulation protocol to determine the density of states with high accuracy. The
We discuss the exact solution for the properties of the recently introduced ``necklace model for reptation. The solution gives the drift velocity, diffusion constant and renewal time for asymptotically long chains. Its properties are also related to