ترغب بنشر مسار تعليمي؟ اضغط هنا

Unusual electronic ground state of a prototype cuprate: band splitting of single CuO_2-plane Bi_2 Sr_(2-x) La_x CuO_(6+delta)

324   0   0.0 ( 0 )
 نشر من قبل Ralph Mueller
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By in-situ change of polarization a small splitting of the Zhang-Rice singlet state band near the Fermi level has been resolved for optimum doped (x=0.4) Bi$_{2}$Sr$_{2-x}$La$_{x}$CuO$_{6+delta}$ at the (pi,0)-point (R.Manzke et al. PRB 63, R100504 (2001). Here we treat the momentum dependence and lineshape of the split band by photoemission in the EDC-mode with very high angular and energy resolution. The splitting into two destinct emissions could also be observed over a large portion of the major symmetry line $Gamma$M, giving the dispersion for the individual contributions. Since bi-layer effects can not be present in this single-layer material the results have to be discussed in the context of one-particle removal spectral functions derived from current theoretical models. The most prominent are microscopic phase separation including striped phase formation, coexisting antiferromagnetic and incommensurate charge-density-wave critical fluctuations coupled to electrons (hot spots) or even spin charge separation within the Luttinger liquid picture, all leading to non-Fermi liquid like behavior in the normal state and having severe consequences on the way the superconducting state forms. Especially the possibilty of observing spinon and holon excitations is discussed.



قيم البحث

اقرأ أيضاً

411 - J. Wei , Y. Zhang , H. W. Ou 2008
Angle resolved photoemission spectroscopy study is reported on a high quality optimally doped Bi2Sr1.6La0.4CuO6+delta high Tc superconductor. In the antinodal region with maximal d-wave gap, the symbolic superconducting coherence peak, which has been widely observed in multi-CuO2-layer cuprate superconductors, is unambiguously observed in a single layer system. The associated peak-dip separation is just about 19 meV, which is much smaller than its counterparts in multi-layered compounds, but correlates with the energy scales of spin excitations in single layer cuprates.
The pairing state symmetry of the electron-doped cuprate superconductors is thought to be s-wave in nature, in contrast with their hole-doped counterparts which exhibit a d-wave symmetry. We re-examine this issue based on recent improvements in our e lectron-doped materials and our measurement techniques. We report microwave cavity perturbation measurements of the temperature dependence of the penetration depth of Pr_(2-x)Ce_(x)CuO_(4-y) and Nd_(2-x)Ce_(x)CuO_(4-y) crystals. Our data strongly suggest that the pairing symmetry in these materials is not s-wave.
86 - Y.-D. Chuang 2001
Using high energy resolution angle resolved photoemission spectroscopy, we have resolved the bilayer splitting effect in a wide range of dopings of the bilayer cuprate $Bi_{2}Sr_{2}CaCu_{2}O_{8+delta}$. This bilayer splitting is due to a nonvanishing intracell coupling $t_{perp}$, and contrary to expectations, it is not reduced in the underdoped materials. This has implications for understanding the increased c-axis confinement in underdoped materials.
The microscopic details of flux line lattice state studied by muon spin rotation is reported in an electron-doped high-$T_{rm c}$ cuprate superconductor, Sr$_{1-x}$La$_{x}$CuO$_{2}$ (SLCO, $x=0.10$--0.15). A clear sign of phase separation between mag netic and non-magnetic phases is observed, where the effective magnetic penetration depth [$lambdaequivlambda(T,H)$] is determined selectively for the latter phase. The extremely small value of $lambda(0,0)$ %versus $T_{rm c}$ and corresponding large superfluid density ($n_s propto lambda^{-2}$) is consistent with presence of a large Fermi surface with carrier density of $1+x$, which suggests the breakdown of the doped Mott insulator even at the optimal doping in SLCO. Moreover, a relatively weak anisotropy in the superconducting order parameter is suggested by the field dependence of $lambda(0,H)$. These observations strongly suggest that the superconductivity in SLCO is of a different class from hole-doped cuprates.
Resistivity and magnetization measurements are used for studying the transverse sliding of AF domain boundaries in lightly doped La_{2-x}Sr_{x}CuO_{4}. We discuss that it is the freezing of the transverse boundary motion that is responsible for the a ppearance of ``spin-glass features at low temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا