ﻻ يوجد ملخص باللغة العربية
We have investigated the ac susceptibility of the spin triplet superconductor Sr$_2$RuO$_4$ as a function of magnetic field in various directions at temperatures down to 60 mK. We have focused on the in-plane field configuration (polar angle $theta simeq 90^{circ}$), which is a prerequisite for inducing multiple superconducting phases in Sr$_2$RuO$_4$. We have found that the previous attribution of a pronounced feature in the ac susceptibility to the second superconducting transition itself is not in accord with recent measurements of the thermal conductivity or of the specific heat. We propose that the pronounced feature is a consequence of additional involvement of vortex pinning originating from the second superconducting transition.
We studied the specific heat and thermal conductivity of the spin-triplet superconductor Sr2RuO4 at low temperatures and under oriented magnetic fields H. We resolved a double peak structure of the superconducting transition under magnetic field for
Recent observations [A.~Pustogow et al. Nature 574, 72 (2019)] of a drop of the $^{17}$O nuclear magnetic resonance (NMR) Knight shift in the superconducting state of Sr$_2$RuO$_4$ challenged the popular picture of a chiral odd-parity paired state in
We report a study of the magnetization density in the mixed state of the unconventional superconductor S2RuO4. On entering the superconducting state we find no change in the magnitude or distribution of the induced moment for a magnetic field of 1 Te
The eutectic system Sr2RuO4-Ru is referred to as the 3-K phase of the spin-triplet supeconductor Sr2RuO4 because of its enhanced superconducting transition temperature Tc of ~3 K. We have investigated the field-temperature (H-T) phase diagram of the
By using Nuclear Magnetic Resonance and ac-susceptibility, the characteristic correlation times for the vortex dynamics, in an iron-based superconductor, have been derived. Upon cooling, the vortex dynamics displays a crossover consistent with a vort