ﻻ يوجد ملخص باللغة العربية
We investigate electronic transport through two types of conjugated molecules. Mechanically controlled break-junctions are used to couple thiol endgroups of single molecules to two gold electrodes. Current-voltage characteristics (IVs) of the metal-molecule-metal system are observed. These IVs reproduce the spatial symmetry of the molecules with respect to the direction of current flow. We hereby unambigously detect an intrinsic property of the molecule, and are able to distinguish the influence of both the molecule and the contact to the metal electrodes on the transport properties of the compound system.
The charge flow from a single C60 molecule to another one has been probed. The conformation and electronic states of both molecules on the contacting electrodes have been characterized using a cryogenic scanning tunneling microscope. While the contac
In this work we theoretically study steady state thermoelectric transport through a single-molecule junction with a long chain-like bridge. Electron transmission through the system is computed using a tight-binding model for the bridge. We analyze de
Using a first principles approach, we study the electron transport properties of a new class of molecular wires containing fluorenone units, whose features open up new possibilities for controlling transport through a single molecule. We show that th
Anisotropic single-molecule magnets may be thought of as molecular switches, with possible applications to molecular spintronics. In this paper, we consider current-induced switching in single-molecule junctions containing an anisotropic magnetic mol
We have contacted single-walled carbon nanotubes after aligning the tubes by the use of surface acoustic waves. The acoustoelectric current has been measured at 4.2 K and a probing of the low-dimensional electronic states by the surface acoustic wave