ﻻ يوجد ملخص باللغة العربية
The friction between the walls of multi-wall carbon nanotubes is shown to be extremely low in general, with important details related to the specific choice of the walls. This is governed by a simple expression revealing that the phenomenon is a profound consequence of the specific symmetry breaking: super-slippery sliding of the incommensurate walls is a Goldstone mode. Three universal principles of tribology, offering a recipe for the lubricant selection are emphasized.
Near-infrared magneto-optical spectroscopy of single-walled carbon nanotubes reveals two absorption peaks with an equal strength at high magnetic fields ($>$ 55 T). We show that the peak separation is determined by the Aharonov-Bohm phase due to the
Often a modification of microscopic symmetry in a system can result in a dramatic change in its macroscopic properties. Here we report that symmetry breaking by a tube-threading magnetic field can drastically increase the photoluminescence quantum yi
The structure and motion of carbon and h-BN nanotubes (NTs) deposited on graphene is inquired theoretically by simulations based on state-of-the-art interatomic force fields. Results show that any typical cylinder-over-surface approximation is essent
We have calculated the effects of structural distortions of armchair carbon nanotubes on their electrical transport properties. We found that the bending of the nanotubes decreases their transmission function in certain energy ranges and leads to an
Carbon nanotubes (CNT) belong to the most promising new materials which can in the near future revolutionize the conventional electronics. When sandwiched between ferromagnetic electrodes, the CNT behaves like a spacer in conventional spin-valves, le