ﻻ يوجد ملخص باللغة العربية
We report magnetization measurements performed on graphite--sulfur composites which demonstrate a clear superconducting behavior below the critical temperature T$_{c0}$ = 35 K. The Meissner-Ochsenfeld effect, screening supercurrents, and magnetization hysteresis loops characteristic of type-II superconductors were measured. The results indicate that the superconductivity occurs in a small sample fraction, possibly related to the sample surface.
The superconductivity of graphite-sulfur composites is highly anisotropic and associated with the graphite planes. The superconducting state coexists with the ferromagnetism of pure graphite, and a continuous crossover from superconducting to ferroma
Superconducting characteristics such as the Meissner-Ochsenfeld state, screening supercurrents and hysteresis loops of type-II superconductors were observed from the temperature and magnetic field dependences of the magnetic moment, m(T, H), in graph
High resolution magnetoresistance data in highly oriented pyrolytic graphite thin samples manifest non-homogenous superconductivity with critical temperature $T_c sim 25 $K. These data exhibit: i) hysteretic loops of resistance versus magnetic field
Due to its low atomic mass hydrogen is the most promising element to search for high-temperature phononic superconductors. However, metallic phases of hydrogen are only expected at extreme pressures (400 GPa or higher). The measurement of a record su
In the last 43 years several hints were reported suggesting the existence of granular superconductivity above room temperature in different graphite-based systems. In this paper some of the results are reviewed, giving special attention to those obta