ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanical properties and formation mechanisms of a wire of single gold atoms

58   0   0.0 ( 0 )
 نشر من قبل Gabino Rubio Bollinger
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A scanning tunneling microscope (STM) supplemented with a force sensor is used to study the mechanical properties of a novel metallic nanostructure: a freely suspended chain of single gold atoms. We find that the bond strength of the nanowire is about twice that of a bulk metallic bond. We perform ab initio calculations of the force at chain fracture and compare quantitatively with experimental measurements. The observed mechanical failure and nanoelastic processes involved during atomic wire fabrication are investigated using molecular dynamics (MD) simulations, and we find that the total effective stiffness of the nanostructure is strongly affected by the detailed local atomic arrangement at the chain bases.



قيم البحث

اقرأ أيضاً

The continuing miniaturization of microelectronics raises the prospect of nanometre-scale devices with mechanical and electrical properties that are qualitatively different from those at larger dimensions. The investigation of these properties, and p articularly the increasing influence of quantum effects on electron transport, has therefore attracted much interest. Quantum properties of the conductance can be observed when `breaking a metallic contact: as two metal electrodes in contact with each other are slowly retracted, the contact area undergoes structural rearrangements until it consists in its final stages of only a few bridging atoms. Just before the abrubt transition to tunneling occurs, the electrical conductance through a monovalent metal contact is always close to a value of 2e^2/h, where e is the charge on an electron and h is Placks constant. This value corresponds to one quantum unit of conductance, thus indicating that the `neck of the contact consists of a single atom. In contrast to previous observations of only single-atom necks, here we describe the breaking of atomic-scale gold contacts, which leads to the formation of gold chains one atom thick and at least four atoms long. Once we start to pull out a chain, the conductance never exceeds 2e^2/h, confirming that it acts as a one-dimensional quantized nanowire. Given their high stability and the ability to support ballistic electron transport, these structures seem well suited for the investigation of atomic-scale electronics.
Using a scanning tunneling microscope or mechanically controllable break junctions it has been shown that it is possible to control the formation of a wire made of single gold atoms. In these experiments an interatomic distance between atoms in the c hain of ~3.6 Angstrom was reported which is not consistent with recent theoretical calculations. Here, using precise calibration procedures for both techniques, we measure length of the atomic chains. Based on the distance between the peaks observed in the chain length histogram we find the mean value of the inter-atomic distance before chain rupture to be 2.6 +/- 0.2 A . This value agrees with the theoretical calculations for the bond length. The discrepancy with the previous experimental measurements was due to the presence of He gas, that was used to promote the thermal contact, and which affects the value of the work function that is commonly used to calibrate distances in scanning tunnelling microscopy and mechanically controllable break junctions at low temperatures.
330 - K. Smaali , S. Desbief , G. Foti 2014
We present a quantitative exploration, combining experiment and simulation, of the mechanical and electronic properties, as well as the modifications induced by an alkylthiolated coating, at the single NP level. We determine the response of the NPs t o external pressure in a controlled manner by using an atomic force microscope tip. We find a strong reduction of their Young modulus, as compared to bulk gold, and a significant influence of strain in the electronic properties of the alkylthiolated NPs. Electron transport measurements of tiny molecular junctions (NP/alkylthiol/CAFM tip) show that the effective tunnelling barrier through the adsorbed monolayer strongly decreases with increasing the applied load, which translates in a remarkable and unprecedented increase of the tunnel current. These observations are successfully explained using simulations based on finite element analysis (FEA) and first-principles calculations that permit to consider the coupling between the mechanical response of the system and the electric dipole variations at the interface.
Single molecule force spectroscopy of DNA strands adsorbed at surfaces is a powerful technique used in air or liquid environments to quantify their mechanical properties. Although the force responses are limited to unfolding events so far, single bas e detection might be possible in more drastic cleanliness conditions such as ultra high vacuum. Here, we report on high resolution imaging and pulling attempts at low temperature (5K) of a single strand DNA (ssDNA) molecules composed of 20 cytosine bases adsorbed on Au(111) by scanning probe microscopy and numerical calculations. Using electrospray deposition technique, the ssDNA were successfully transferred from solution onto a surface kept in ultra high vacuum. Real space characterizations reveal that the ssDNA have an amorphous structure on gold in agreement with numerical calculations. Subsequent substrate annealing promotes the desorption of solvent molecules, DNA as individual molecules as well as the formation of DNA self assemblies. Furthermore, pulling experiments by force spectroscopy have been conducted to measure the mechanical response of the ssDNA while detaching. A periodic pattern of 0.2 to 0.3nm is observed in the force curve which arises from the stick slip of single nucleotide bases over the gold. Although an intra molecular response is obtained in the force curve, a clear distinction of each nucleotide detachment is not possible due the complex structure of ssDNA adsorbed on gold.
Modelling of single cellulose fibres is usually performed by assuming homogenous properties, such as strength and Young s modulus, for the whole fibre. Additionally, the inhomogeneity in size and swelling behaviour along the fibre is often disregarde d. For better numerical models, a more detailed characterization of the fibre is required. Herein, we report a method based on atomic force microscopy to map these properties along the fibre. A fibre was mechanically characterized by static colloidal probe AFM measurements along the fibre axis. Thus, the contact stress and strain at each loading point can be extracted. Stress strain curves can be obtained along the fibre. Additionally, mechanical properties such as adhesion or dissipation can be mapped. The inhomogeneous swelling behaviour was recorded via confocal laser scanning microscopy along the fibre. Scanning electron microscopy measurements revealed the local macroscopic fibril orientation and provided an overview of the fibre topology. By combining these data, regions along the fibre with higher adhesion, dissipation, bending ability and strain or differences in the contact stress when increasing the relative humidity could be identified. This combined approach allows for one to obtain a detailed picture of the mechanical properties of single fibres.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا