ﻻ يوجد ملخص باللغة العربية
A scanning tunneling microscope (STM) supplemented with a force sensor is used to study the mechanical properties of a novel metallic nanostructure: a freely suspended chain of single gold atoms. We find that the bond strength of the nanowire is about twice that of a bulk metallic bond. We perform ab initio calculations of the force at chain fracture and compare quantitatively with experimental measurements. The observed mechanical failure and nanoelastic processes involved during atomic wire fabrication are investigated using molecular dynamics (MD) simulations, and we find that the total effective stiffness of the nanostructure is strongly affected by the detailed local atomic arrangement at the chain bases.
The continuing miniaturization of microelectronics raises the prospect of nanometre-scale devices with mechanical and electrical properties that are qualitatively different from those at larger dimensions. The investigation of these properties, and p
Using a scanning tunneling microscope or mechanically controllable break junctions it has been shown that it is possible to control the formation of a wire made of single gold atoms. In these experiments an interatomic distance between atoms in the c
We present a quantitative exploration, combining experiment and simulation, of the mechanical and electronic properties, as well as the modifications induced by an alkylthiolated coating, at the single NP level. We determine the response of the NPs t
Single molecule force spectroscopy of DNA strands adsorbed at surfaces is a powerful technique used in air or liquid environments to quantify their mechanical properties. Although the force responses are limited to unfolding events so far, single bas
Modelling of single cellulose fibres is usually performed by assuming homogenous properties, such as strength and Young s modulus, for the whole fibre. Additionally, the inhomogeneity in size and swelling behaviour along the fibre is often disregarde