ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron Spin Resonance of Ni-doped CuGeO$_3$ in the paramagnetic, spin-Peierls and antiferromagnetic states: Comparison with non-magnetic impurities

86   0   0.0 ( 0 )
 نشر من قبل Grenier
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed Electron Spin Resonance measurements on single crystals of the doped spin-Peierls compounds CuGe$_{1-y}$Si$_y$O$_3$ and Cu$_{1-x}$M$_x$GeO$_3$ with M = Zn, Mg, Ni ($x, yleq 0.1$). The first part of our experiments was performed in the paramagnetic and spin-Peierls phases at 9.5, 95 and 190 GHz. All non-magnetic impurities (Si, Zn and Mg) were found to hardly affect the position and linewidth of the single line resonance, in spite of the moment formation due to the broken chains. In contrast to Si, Zn and Mg-doping, the presence of Ni (S = 1) at low concentration induces a spectacular shift towards high fields of the ESR line (up to 40% for x=0.002), together with a large broadening. This shift is strictly proportional to the ratio of Ni to Cu susceptibilities: Hence it is strongly enhanced below the spin-Peierls transition. We interpret this shift and the broadening as due to the exchange field induced by the Ni ions onto the strongly exchange coupled Cu spins. Second, the antiferromagnetic resonance was investigated in Ni-doped samples. The frequency vs magnetic field relation of the resonance is well explained by the classical theory with orthorhombic anisotropy, with $g$ values remarkably reduced, in accordance with the study of the spin-Peierls and paramagnetic phases. The easy, second-easy, and hard axes are found to be $a$, $c$, and $b$ axes, respectively. These results, which are dominated by the single ion anisotropy of Ni$^{2+}$, are discussed in comparison with those in the Zn- and Si-doped CuGeO$_3$.



قيم البحث

اقرأ أيضاً

The spin-Peierls transition at $T_{SP}$ of spin-$1/2$ chains with isotropic exchange interactions has previously been modeled as correlated for $T > T_{SP}$ and mean field for $T < T_{SP}$. We use correlated states throughout in the $J_1-J_2$ model w ith antiferromagnetic exchange $J_1$ and $J_2 = alpha J_1$ between first and second neighbors, respectively, and variable frustration $0 leq alpha leq 0.50$. The thermodynamic limit is reached at high $T$ by exact diagonalization of short chains and at low $T$ by density matrix renormalization group calculations of progressively longer chains. In contrast to mean field results, correlated states of 1D models with linear spin-phonon coupling and a harmonic adiabatic lattice provide an internally consistent description in which the parameter $T_{SP}$ yields both the stiffness and the lattice dimerization $delta(T)$. The relation between $T_{SP}$ and $Delta(delta,alpha)$, the $T = 0$ gap induced by dimerization, depends strongly on $alpha$ and deviates from the BCS gap relation that holds in uncorrelated spin chains. Correlated states account quantitatively for the magnetic susceptibility of TTF-CuS$_4$C$_4$(CF$_3$)$_4$ crystals ($J_1 = 79$ K, $alpha = 0$, $T_{SP} = 12$ K) and CuGeO$_3$ crystals ($J_1 = 160$ K, $alpha = 0.35$, $T_{SP} = 14$ K). The same parameters describe the specific heat anomaly of CuGeO$_3$ and inelastic neutron scattering. Modeling the spin-Peierls transition with correlated states exploits the fact that $delta(0)$ limits the range of spin correlations at $T = 0$ while $T > 0$ limits the range at $delta= 0$.
The spin-Peierls transition is modeled in the dimer phase of the spin-$1/2$ chain with exchanges $J_1$, $J_2 = alpha J_1$ between first and second neighbors. The degenerate ground state generates an energy cusp that qualitatively changes the dimeriza tion $delta(T)$ compared to Peierls systems with nondegenerate ground states. The parameters $J_1 = 160$ K, $alpha = 0.35$ plus a lattice stiffness account for the magnetic susceptibility of CuGeO$_3$, its specific heat anomaly, and the $T$ dependence of the lowest gap.
The doping effect of the folded phonon mode at 98 cm$^{-1}$ was investigated on the Si-doped CuGeO$_3$ by magneto-optical measurements in far-infrared (FIR) region under high magnetic field. The folded phonon mode at 98 cm$^{-1}$ appears not only in the dimerized (D) phase but also in the dimerized-anitiferromagnetic (DAF) phase on the doped CuGeO$_3$. The splitting was observed in the incommensurate (IC) phase and the antiferromagnetically ordered incommensurate (IAF) phase above $H_C$. The split-off branches exhibit different field dependence from that of the pure CuGeO$_3$ in the vicinity of $H_C$, and the discrepancy in the IAF phase is larger than that in the IC phase. It is caused by the interaction between the solitons and the impurities.
The S=1/2 spin chain material SrCuO2 doped with 1% S=1 Ni-impurities is studied by inelastic neutron scattering. At low temperatures, the spectrum shows a pseudogap Delta ~ 8 meV, absent in the parent compound, and not related to any structural phase transition. The pseudogap is shown to be a generic feature of quantum spin chains with dilute defects. A simple model based on this idea quantitatively accounts for the exprimental data measured in the temperature range 2-300 K, and allows to represent the momentum-integrated dynamic structure factor in a universal scaling form.
CaCo2As2 is a unique itinerant system having strong magnetic frustration. Here we report the effect of electron doping on the physical properties resulting from Ni substitutions for Co. The A-type antiferromagnetic transition temperature TN = 52 K fo r x = 0 decreases to 22 K with only 3 percent Ni substitution and is completely suppressed for x > 0.11. For 0.11 < x < 0.52 strong ferromagnetic (FM) fluctuations develop as revealed by magnetic susceptibility chi(T) measurements. Heat-capacity Cp(T) measurements reveal the presence of FM quantum spin fluctuations for 0.11 < x < 0.52. Our density-functional theory (DFT) calculations confirm that FM fluctuations are enhanced by Ni substitutions for Co. The Sommerfeld electronic heat-capacity coefficient is enhanced for x = 0, 0.21, and 0.42 by about a factor of two compared to DFT calculations of the bare density of states at the Fermi energy. The crystals with x > 0.52 do not exhibit FM spin fluctuations or magnetic order, which was found from the DFT calculations to arise from a Stoner transition. Neutron-diffraction studies of crystals with x = 0.11 and 0.16 found no evidence of A-type ordering as observed in CaCo2As2 or of other common magnetic structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا