ﻻ يوجد ملخص باللغة العربية
Magneto-optical imaging in YBa2Cu3O7-d with tilted columnar defects (CDs) shows an asymmetric critical-state field profile. The observed hysteretic shift of the profile ridge (trough) from the center of the sample is explained by in-plane magnetization originated from vortex alignment along CDs. The extracted ratio of the in-plane to out-of-plane magnetization component has a maximum at 1/5 of matching field ($B_Phi$) and disappears above $B_Phi/3$, suggesting a reduction of interlayer coherence well bellow $B_Phi$ in the Bose glass phase. Implications are discussed in comparison with the vortex liquid recoupling observed in irradiated Bi2Sr2CaCu2O8+y.
Structural and transport properties of interacting localized flux lines in the Bose glass phase of irradiated superconductors are studied by means of Monte Carlo simulations near the matching field B_Phi, where the densities of vortices and columnar
We report on the effect of agglomeration forced by strong electric field in fine particles of nearly ferroelectric YBa2Cu3O7-d superconductor. It turns out that the particles from agglomerates exhibit different morphology than the rest of powder that
Temperature dependences of the magnetic moment have been measured in YBa_2Cu_3O_{7-delta} thin films over a wide magnetic field range (5 <= H <= 10^4 Oe). In these films a paramagnetic signal known as the paramagnetic Meissner effect has been observe
The microscopic doping mechanism behind the superconductor-to-insulator transition of a thin film of YBa2Cu3O7 was recently identified as due to the migration of O atoms from the CuO chains of the film. Here we employ density-functional theory calcul
We present a detailed study of the electrical transport properties of YBa2Cu3O7-{delta} thin film. The irreversibility fields ({mu}_0 H_irr), upper critical fields ({mu}_0 H_C2), penetration depths ({lambda}) and coherence lengths ({xi} ) of the YBa2